
INFORMIX-
ESQL/COBOL
Embedded SQL for COBOL

Programmer’s Manual

®

Version 7.2
April 1996
Part No. 000-7893A

ii INFORMIX-ESQL/COB
Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

INFORMIX; C-ISAM; INFORMIX®-OnLine Dynamic Server

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

X/Open Company Ltd.: UNIX®; X/Open®

Adobe Systems Incorporated: PostScript®

International Business Machines Corporation: IBM®; DRDA™
Novell, Inc.: NetWare®; IPX/SPX™
Sun Microsystems, Inc.: Sun Microsystems™; NFS®

Micro Focus Ltd.: Micro Focus®; Micro Focus COBOL/2™
Ryan-McFarland (Liant) Corporation: Ryan-McFarland®

Some of the products or services mentioned in this document are provided by companies other than Informix.
These products or services are identified by the trademark or servicemark of the appropriate company. If you
have a question about one of those products or services, please call the company in question directly.

Documentation Team: Geeta Karmarkar, Steve Klitzing, Eileen Wollam

Copyright © 1981-1996 by Informix Software, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any
means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the publisher.

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS LEGEND

Software and accompanying materials acquired with United States Federal Government funds or intended for
use within or for any United States federal agency are provided with “Restricted Rights” as defined in DFARS
252.227-7013(c)(1)(ii) or FAR 52.227-19.
OL Programmer’s Manual

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Organization of This Manual 3
Types of Users 4
Software Dependencies 5
Demonstration Database 5

New Features of This Product 8
Conventions . 10

Typographical Conventions 10
Icon Conventions 11
Command-Line Conventions 12

Additional Documentation 15
Printed Documentation 15
On-Line Documentation 16
Vendor-Specific Documentation 17
Related Reading 18

Compliance with Industry Standards 19
Informix Welcomes Your Comments 19

Chapter 1 Programming with INFORMIX-ESQL/COBOL
What Is INFORMIX-ESQL/COBOL? 1-3
Preparing to Use INFORMIX-ESQL/COBOL 1-4
Creating a COBOL Run-Time Program 1-6

The RM/COBOL-85 Run-Time Program 1-7
The MF COBOL/2 Run-Time Program 1-9

Using SQL in COBOL Programs 1-9
Embedding SQL Statements in COBOL Programs 1-9
COBOL Statement Format 1-13
Including Comments 1-18
Reserved Words and Conventions 1-18
Error Handling 1-19

iv INFOR
Using Host Variables in SQL Statements 1-22
Declaring Host Variables 1-22
Declaring Group Items and Arrays 1-24

Using Indicator Variables in SQL Statements 1-25
Following Rules for Indicator Variables 1-26
Representing Indicator Variables 1-27
Declaring Indicator Variables 1-27
Indicator Variables and Null Values 1-28

The INFORMIX-ESQL/COBOL Preprocessor 1-30
Supported ESQL/COBOL Preprocessor Instructions 1-30
INCLUDE Statements 1-31

Compiling INFORMIX-ESQL/COBOL Programs 1-33
The esqlcobol Command 1-34
Preprocessing, Compiling, and Linking 1-35
Preprocessor Naming Options 1-37

Running a Program 1-43
A Sample INFORMIX-ESQL/COBOL Program 1-46

The DEMO1.ECO Program 1-47
Explanation of DEMO1.ECO 1-49

Chapter 2 INFORMIX-ESQL/COBOL Data Types
Choosing Data Types for Host Variables 2-4

BINARY or COMP Data Using MF COBOL/2 2-6
Data Conversion 2-7

Converting CHARACTER Data. 2-8
Converting SMALLINT Data 2-8
Converting INTEGER Data 2-8
Converting FLOAT, SMALLFLOAT, and DECIMAL

Data 2-9
Converting DATE Data. 2-9
Data Discrepancies During Conversion 2-10

The CHAR Data Type 2-11
CHAR Type Routines 2-13

ECO-DSH 2-14
ECO-USH 2-17
ECO-GST 2-20
ECO-SQC 2-21

The VARCHAR Data Type 2-22
Data Comparison of VARCHAR Values 2-22
Programming with VARCHAR Host Variables 2-23

The TEXT and BYTE Data Types 2-25
Working with Blobs 2-25
Using Blobs with Dynamic SQL. 2-27
MIX-ESQL/COBOL Programmer’s Manual

Numeric-Formatting Routines 2-31
Formatting Numeric Strings 2-33
ECO-FFL . 2-41
ECO-FIN . 2-43

Chapter 3 Working with Time Data Types
DATE Type Routines 3-3

ECO-DAT . 3-7
ECO-DAY. 3-10
ECO-DEF . 3-13
ECO-FMT. 3-18
ECO-JUL . 3-23
ECO-LYR . 3-26
ECO-MDY 3-28
ECO-STR . 3-31
ECO-TDY . 3-33

DATETIME and INTERVAL Type Routines 3-35
ANSI SQL Standards for DATETIME and INTERVAL

Values 3-36
ECO-DAI . 3-38
ECO-DSI . 3-42
ECO-DTC . 3-45
ECO-DTCVASC. 3-47
ECO-DTS . 3-52
ECO-DTTOASC 3-57
ECO-DTX . 3-62
ECO-IDI . 3-65
ECO-IDN . 3-69
ECO-IMN. 3-73
ECO-INCVASC 3-77
ECO-INTOASC 3-82
ECO-INX . 3-87
ECO-IQU . 3-90
ECO-SQU . 3-93

Chapter 4 Error Handling
Obtaining Diagnostic Information After an SQL Statement Executes . 4-4
The GET DIAGNOSTICS Statement 4-4

Statement Information 4-4
Exception Information 4-5
Examples Illustrating the GET DIAGNOSTICS Statement . . . 4-7
Using the SQLSTATE Variable. 4-9
Multiple Error Conditions 4-16

The SQLCA Record 4-17
The Contents of the SQLCA Structure 4-19
Using SQLCODE OF SQLCA 4-21
Table of Contents v

vi INFOR
Codes for SQL Statement Results 4-21
Success . 4-22
Success with Warning 4-22
No Data Found 4-22
Error . 4-24

Error Handling in Programs 4-25
Checking for Errors with the GET DIAGNOSTICS

Statement 4-25
Checking for an Error Using In-Line Code 4-26
Automatically Checking for Errors Using the

WHENEVER Statement 4-29
Checking for Warnings Using GET DIAGNOSTICS 4-35
Checking for Warnings Using the SQLWARN OF

SQLCA Structure 4-38
ECO-MSG 4-41

A Program That Uses Full Error Checking 4-45

Chapter 5 Working with the Database Server
Understanding Database Server Connections 5-4

Client/Server Architecture of ESQL/COBOL
Applications 5-4

Connecting an ESQL/COBOL Application to a
Database Server 5-6

Using Callback Procedures 5-13
Routines That Work with the Database Server 5-27

ECO-SIG. 5-28
ECO-SQB 5-31
ECO-SQBCB 5-32
ECO-SQD 5-35
ECO-SQE 5-37
ECO-SQS 5-41

Chapter 6 Dynamic Management in INFORMIX-ESQL/COBOL
Programming with Dynamic SQL Statements 6-4

Working with a System Descriptor Area in
INFORMIX-ESQL/COBOL 6-5

Dynamic SQL Statements and Management
Techniques 6-7

When You Need Dynamic SQL Statements 6-8
The System Descriptor Area in ESQL/COBOL 6-10

Using a System Descriptor Area 6-10
MIX-ESQL/COBOL Programmer’s Manual

SELECT Statements That Receive WHERE-Clause Values
at Run Time 6-19

Using Host Variables 6-20
Using a System Descriptor Area 6-21

SELECT Statements in Which Select-List Values Are
Determined at Run Time 6-24

Non-SELECT Statements That Receive Values at Run
Time . 6-26

Using Host Variables 6-26
Using a System Descriptor Area 6-27

Non-SELECT Statements That Do Not Receive Values
at Run Time 6-27

Using the EXECUTE IMMEDIATE Statement 6-28
Executing Stored Procedures That Receive Arguments

at Run Time 6-29
Creating a Stored Procedure 6-30
Executing a Stored Procedure Within Your

ESQL/COBOL Application 6-30
Dynamic SQL Program Examples 6-34

The DEMO2.ECO Program 6-35
Explanation of DEMO2.ECO 6-39
The DEMO3.ECO Program 6-49
Explanation of DEMO3.ECO 6-54

Appendix A List of INFORMIX-ESQL/COBOL Routines

Index
Table of Contents vii

Introduction

Introduction
About This Manual 3
Organization of This Manual 3
Types of Users 4
Software Dependencies 5
Demonstration Database 5

New Features of This Product 8

Conventions . 10
Typographical Conventions 10
Icon Conventions 11

Comment Icons 11
Compliance Icons 12

Command-Line Conventions 12

Additional Documentation 15
Printed Documentation 15
On-Line Documentation. 16

Error Message Files 16
Release Notes, Documentation Notes, Machine Notes 17

Vendor-Specific Documentation 17
Related Reading 18

Compliance with Industry Standards 19

Informix Welcomes Your Comments 19

2 INFOR
MIX-ESQL/COBOL Programmer’s Manual

his chapter introduces the INFORMIX-ESQL/COBOL Programmer’s
Manual. Read this chapter for an overview of the information provided in this
manual and for an understanding of the conventions used throughout this
manual.

About This Manual
The INFORMIX-ESQL/COBOL Programmer’s Manual describes the
INFORMIX-ESQL/COBOL SQL application-programming interface (API) that
enables the COBOL programmer to create custom COBOL applications with
database-management capabilities.

The INFORMIX-ESQL/COBOL Programmer’s Manual provides information
about the INFORMIX-ESQL/COBOL product and explains how to access and
use the libraries, header files, and preprocessor that are provided with
INFORMIX-ESQL/COBOL to enable you to access databases, manipulate the
data in your program, interact with the database server, and check for errors.

Organization of This Manual
The INFORMIX-ESQL/COBOL Programmer’s Manual includes the following
chapters:

■ This Introduction describes how INFORMIX-ESQL/COBOL fits into
the Informix family of products and books, explains how to use this
book, introduces the demonstration database from which the prod-
uct examples are drawn, describes the Informix Messages and Cor-
rections product, and lists the new features for Version 7.1 of
INFORMIX-ESQL/COBOL.

■ Chapter 1, “Programming with INFORMIX-ESQL/COBOL,” pro-
vides the basic information that you need to program in INFOR-

T

Introduction 3

Types of Users
MIX-ESQL/COBOL. It discusses how to write, preprocess, and
compile COBOL programs that contain embedded SQL statements
and how to use identifiers and host variables. It includes an example
that illustrates the main concepts of INFORMIX-ESQL/COBOL
programming.

■ Chapter 2, “INFORMIX-ESQL/COBOL Data Types,” discusses the
data types that SQL recognizes and their correspondence to COBOL
language data types. It also describes and illustrates data conversion
and numeric-formatting routines plus character-string manipulation
routines.

■ Chapter 3, “Working with Time Data Types,” contains detailed
descriptions of the library routines that permit the manipulation of
DATE, DATETIME, and INTERVAL data types.

■ Chapter 4, “Error Handling,”,” explains how to use error checking
effectively in your INFORMIX-ESQL/COBOL programs.

■ Chapter 5, “Working with the Database Server,” describes callback
procedures and miscellaneous run-time routines included with the
INFORMIX-ESQL/COBOL library extension, which allow you to work
with the database server.

■ Chapter 6, “Dynamic Management in INFORMIX-ESQL/COBOL,”
discusses how INFORMIX-ESQL/COBOL handles dynamic manage-
ment and illustrates two demonstration programs that contain
embedded dynamic SQL statements that are provided with the
software.

■ Appendix A lists the INFORMIX-ESQL/COBOL library routines
described throughout this manual. The list includes chapter and
page references for all the routines.

Types of Users
The INFORMIX-ESQL/COBOL Programmer’s Manual is written for all of the
INFORMIX-ESQL/COBOL users and those individuals who administrate
INFORMIX-ESQL/COBOL applications.
4 INFORMIX-ESQL/COBOL Programmer’s Manual

Software Dependencies
Software Dependencies
INFORMIX-ESQL/COBOL works with a database server, either
INFORMIX-OnLine Dynamic Server or INFORMIX-SE, or with the
INFORMIX-Enterprise Gateway product. When you compile
INFORMIX-ESQL/COBOL programs, those programs can automatically
communicate with database servers in a distributed network environment.
You need only specify in the sqlhosts file the database servers with which
your programs communicate. Specifying database servers in the sqlhosts file
is described in both the INFORMIX-SE Administrator’s Guide and the
INFORMIX-OnLine Dynamic Server Administrator’s Guide. Also, refer to
Chapter 5, “Working with the Database Server,” in this manual for
networking and connection information specific to INFORMIX-ESQL/COBOL.

Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. The
sample command files that make up a demonstration application are also
included.

Most examples in this manual are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.

The script that you use to install the demonstration database is called
esqlcobdemo7 and is located in the $INFORMIXDIR/bin directory. The
database name that you supply is the name given to the demonstration
database. If you do not supply a database name, the name defaults to stores7.
Use the following rules for naming your database:

■ Names can have a maximum of 18 characters for INFORMIX-OnLine
Dynamic Server databases and a maximum of 10 characters for
INFORMIX-SE databases.

■ The first character of a name must be a letter or an underscore (_).

■ You can use letters, characters, and underscores (_) for the rest of the
name.
Introduction 5

Demonstration Database
■ INFORMIX-ESQL/COBOL makes no distinction between uppercase
and lowercase letters.

■ The database name must be unique.

When you run esqlcobdemo7, you are, as the creator of the database, the
owner and Database Administrator (DBA) of that database.

If you install your Informix database server according to the installation
instructions, the files that constitute the demonstration database are
protected so that you cannot make any changes to the original database.

You can run the esqlcobdemo7 script again whenever you want to work with
a fresh demonstration database. The script prompts you when the creation of
the database is complete and asks if you would like to copy the sample
command files to the current directory. Enter N if you have made changes to
the sample files and do not want them replaced with the original versions.
Enter Y if you want to copy over the sample command files.

To create and populate the stores7 demonstration database

1. Set the INFORMIXDIR environment variable so that it contains the
name of the directory in which your Informix products are installed.

2. Set INFORMIXSERVER to the name of the default database server.

The name of the default database server must exist in the
$INFORMIXDIR/etc/sqlhosts file. (For a full description of
environment variables, see Chapter 4 of the Informix Guide to SQL:
Reference.) For information about sqlhosts, see the
INFORMIX-OnLine Dynamic Server Administrator’s Guide or the
INFORMIX-SE Administrator’s Guide.

3. Create a new directory for the SQL command files. Create the
directory by entering the following command:
mkdir dirname

4. Make the new directory the current directory by entering the
following command:
cd dirname
6 INFORMIX-ESQL/COBOL Programmer’s Manual

Demonstration Database
5. Create the demonstration database and copy over the sample
command files by entering the esqlcobdemo7 command.

To create the database without logging, enter the following
command:
esqlcobdemo7 dbname

To create the demonstration database with logging, enter the
following command:
esqlcobdemo7 -log dbname

If you are using INFORMIX-OnLine Dynamic Server, by default the
data for the database is put into the root dbspace. If you wish, you
can specify a dbspace for the demonstration database.

To create a demonstration database in a particular dbspace, enter the
following command:
esqlcobdemo7 dbname -dbspace dbspacename

You can specify all of the options in one command, as shown in the
following command:
esqlcobdemo7 -log dbname -dbspace dbspacename

If you are using INFORMIX-SE, a subdirectory called dbname.dbs is
created in your current directory and the database files associated
with stores7 are placed there. You will see both data (.dat) and index
(.idx) files in the dbname.dbs directory. (If you specify a dbspace
name, it is ignored.)

To use the database and the command files that have been copied to
your directory, you must have UNIX read and execute permissions
for each directory in the pathname of the directory from which you
ran the esqlcobdemo7 script. Check with your system administrator
for more information about operating-system file and directory
permissions. UNIX permissions are discussed in the
INFORMIX-OnLine Dynamic Server Administrator’s Guide and the
INFORMIX-SE Administrator’s Guide.

6. To give someone else the permissions to access the command files in
your directory, use the UNIX chmod command.

7. To give someone else access to the database that you have created,
grant them the appropriate privileges using the GRANT statement.

To revoke privileges, use the REVOKE statement. The GRANT and
REVOKE statements are described in Chapter 1 of the Informix Guide
to SQL: Syntax.
Introduction 7

New Features of This Product
New Features of This Product
The Introduction to each Version 7.2 product manual contains a list of new
features for that product. The Introduction to each manual in the Version 7.2
Informix Guide to SQL series contains a list of new SQL features.

A comprehensive list of all of the new features for Version 7.2 Informix
products is in the Release Notes file called SERVERS_7.2.

This section highlights the major new features implemented in Version 7.2 of
INFORMIX-ESQL/COBOL.

■ Support for Level 88 variables

When you declare variables in the working storage section, you can
declare those variables as Level 88. See Chapter 1 for details.

■ Support for the COMP-2 specifier when using the MF COBOL/2
compiler

When you use the MF COBOL/2 compiler, you can specify COMP-2 in
your variable declarations. See Chapter 2 for details.

■ Support for Global Language Support (GLS)

The following INFORMIX-ESQL/COBOL routines support some GLS
functionality:

❑ ECO-DSH

❑ ECO-USH

❑ ECO-FIN

❑ ECO-FFL

❑ ECO-DEF

❑ ECO-DAT

❑ ECO-FMT

❑ ECO-STR

❑ ECO-DTTOASC

See Chapters 2 and 3 for details.

SQLWARN7 supports locale-specific warnings. See Chapter 4 for
details.

Host variables and indicator variables support locale-specific
language. See the Guide to GLS Functionality for details. ♦

GLS
8 INFORMIX-ESQL/COBOL Programmer’s Manual

New Features of This Product
■ SQLWARN1 and SQLWARN3 generate warnings under additional
conditions. See Chapter 4 for details.

■ The following SQL statements are new but retain the constant values
of the GRANT and REVOKE statements that they replace:

❑ GRANT FRAGMENT

❑ REVOKE FRAGMENT

See Chapter 6 for details.

■ The following SQL statements are new and have new constant
values:

❑ SET

❑ START VIOLATIONS TABLE

❑ STOP VIOLATIONS TABLE

See Chapter 6 for details.

■ Support for the year 2000.

INFORMIX-ESQL/COBOL allows you to use the year 2000 when you
provide two-digit year values under the following conditions:

❑ String-to-date conversions

❑ String-to-datetime conversions

❑ Date literals

❑ Datetime literals

For more information on support for the year 2000, see Chapter 3 and
the Informix Guide to SQL: Reference.
Introduction 9

Conventions
Conventions
This section describes the conventions that are used in this manual. By
becoming familiar with these conventions, you will find it easier to gather
information from this and other volumes in the documentation set.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Command-line conventions

Typographical Conventions
This manual uses a standard set of conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth. The
following typographical conventions are used throughout this manual.

Convention Meaning

italics Within text, new terms and emphasized words are printed in
italics. Within syntax diagrams, values that you are to specify
are printed in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, table names, column
names, menu items, command names, and other similar terms
are printed in boldface.

monospace Information that the product displays and information that you
enter are printed in a monospace typeface.

KEYWORD All keywords appear in uppercase letters.

♦ This symbol indicates the end of product- or platform-specific
information.
10 INFORMIX-ESQL/COBOL Programmer’s Manual

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as described in the
following table. This information is always displayed in italics.

Icon Description

Identifies paragraphs that contain vital instructions,
cautions, or critical information.

Identifies paragraphs that contain significant information
about the feature or operation that is being described.

Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described.
Introduction 11

Command-Line Conventions
Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

Command-Line Conventions
INFORMIX-ESQL/COBOL supports a variety of command-line options. You
enter these commands at the operating-system prompt to perform certain
functions in INFORMIX-ESQL/COBOL. Each valid command-line option is
illustrated in a diagram in Chapter 1, “Programming with INFORMIX-
ESQL/COBOL.”

This section defines and illustrates the format of the commands that are
available in INFORMIX-ESQL/COBOL and other Informix products. These
commands have their own conventions, which might include alternative
forms of a command, required and optional parts of the command, and so
forth.

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper left with a command.
It ends at the upper right with a vertical line. Between these points, you can
trace any path that does not stop or back up. Each path describes a valid form
of the command. You must supply a value for words that are in italics.

Icon Description

Identifies information that is specific to an ANSI-compliant
database.

Identifies information that is specific to a GLS-compliant
database or application.

ANSI

GLS
12 INFORMIX-ESQL/COBOL Programmer’s Manual

Command-Line Conventions
You might encounter one or more of the following elements on a command-
line path.

Element Description

command This required element is usually the product name or
other short word that invokes the product or calls the
compiler or preprocessor script for a compiled Informix
product. It might appear alone or precede one or more
options. You must spell a command exactly as shown
and must use lowercase letters.

variable A word in italics represents a value that you must
supply, such as a database, file, or program name. A table
following the diagram explains the value.

-flag A flag is usually an abbreviation for a function, menu, or
option name or for a compiler or preprocessor argument.
You must enter a flag exactly as shown, including the
preceding hyphen.

.ext A filename extension, such as .sql or .cob, might follow
a variable that represents a filename. Type this extension
exactly as shown, immediately after the name of the file
and a period. The extension might be optional in certain
products.

(.,;+*-/) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter as
shown.

A reference in a box represents a subdiagram on the
same page (if no page is supplied) or another page.
Imagine that the subdiagram is spliced into the main
diagram at this point.

A shaded option is the default. If you do not explicitly
type the option, it will be in effect unless you choose
another option.

Syntax enclosed in a pair of arrows indicates that this is
a subdiagram.

 (1 of 2)

Privileges
 p. 5-17

Privileges

ALL
Introduction 13

Command-Line Conventions
Figure 1 shows how you read the command-line diagram for setting the
INFORMIXC environment variable.

To construct a correct command, start at the top left with the command
setenv. Then follow the diagram to the right, including the elements that you
want. The elements in the diagram are case sensitive.

To read the example command-line diagram

1. Type the word setenv.

2. Type the word INFORMIXC.

3. Supply either a compiler name or pathname.

After you choose compiler or pathname, you come to the terminator.
Your command is complete.

4. Press ENTER to execute the command.

The vertical line is a terminator and indicates that the
statement is complete.

A branch below the main line indicates an optional path.
(Any term on the main path is required, unless a branch
can circumvent it.)

A loop indicates a path that you can repeat. Punctuation
along the top of the loop indicates the separator symbol
for list items, as in this example.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is part
of a larger loop. Here you can specify size no more than
three times within this statement segment.

Element Description

 (2 of 2)

NOT

IN

variable

,

3 size

, 3

Figure 1
An Example Command-Line Diagram

pathname

compilersetenv INFORMIXC
14 INFORMIX-ESQL/COBOL Programmer’s Manual

Additional Documentation
Additional Documentation
The INFORMIX-ESQL/COBOL Programmer’s Manual documentation set
includes printed manuals, on-line manuals, and on-line help.

This section describes the following pieces of the documentation set:

■ Printed documentation

■ On-line documentation

■ Vendor-specific documentation

■ Related reading

Printed Documentation
The following printed manuals are included in the INFORMIX-ESQL/COBOL
documentation set:

■ If you have never used Structured Query Language (SQL), read the
Informix Guide to SQL: Tutorial. It provides a tutorial on SQL as it is
implemented by Informix products. It also describes the funda-
mental ideas and terminology for planning, implementing, and
using a relational database.

■ A companion volume to the Tutorial, the Informix Guide to SQL:
Reference, includes details of the Informix system catalog tables,
describes Informix and common environment variables that you
should set, and describes the column data types that Informix
database servers support.

■ An additional companion volume to the Reference, the Informix
Guide to SQL: Syntax, provides a detailed description of all the SQL
statements supported by Informix products. This guide also pro-
vides a detailed description of Stored Procedure Language (SPL)
statements.

■ The SQL Quick Syntax Guide contains syntax diagrams for all
statements and segments described in this manual.

■ You, or whoever installs your Informix products, should refer to the
UNIX Products Installation Guide for your particular release to ensure
that your Informix product is properly set up before you begin to
Introduction 15

On-Line Documentation
work with it. A matrix depicting possible client/server configura-
tions is included in the UNIX Products Installation Guide.

The following related Informix documents complement the information
in this manual set:

■ Depending on the database server you are using, you or your system
administrator need either the INFORMIX-SE Administrator’s Guide or
the INFORMIX-OnLine Dynamic Server Administrator’s Guide.

■ The DB-Access User Manual describes how to invoke the DB-Access
utility to access, modify, and retrieve information from Informix
database servers.

■ When errors occur, you can look them up by number and learn their
cause and solution in the Informix Error Messages manual. If you pre-
fer, you can look up the error messages in the on-line message file
described in “Error Message Files” later in this Introduction and in
the Introduction to the Informix Error Messages manual.

On-Line Documentation
Several different types of on-line documentation are available:

■ On-line error messages

■ Release notes, documentation notes, and machine notes

Error Message Files

Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. To read the error
messages in the ASCII file, Informix provides scripts that let you display error
messages on the screen (finderr) or print formatted error messages (rofferr).
See the Introduction to the Informix Error Messages manual for a detailed
description of these scripts.

The optional Informix Messages and Corrections product provides
PostScript files that contain the error messages and their corrective actions. If
you have installed this product, you can print the PostScript files on a
PostScript printer. The PostScript error messages are distributed in a number
of files of the format errmsg1.ps, errmsg2.ps, and so on. These files are
located in the $INFORMIXDIR/msg directory.
16 INFORMIX-ESQL/COBOL Programmer’s Manual

Vendor-Specific Documentation
Release Notes, Documentation Notes, Machine Notes

In addition to the Informix set of manuals, the following on-line files, located
in the $INFORMIXDIR/release/en_us/0333 directory, might supplement the
information in this manual.

Please examine these files because they contain vital information about
application and performance issues.

Vendor-Specific Documentation
For more information about the MF COBOL/2 and RM/COBOL-85 COBOL
compilers used with INFORMIX-ESQL/COBOL, refer to the documentation
provided with those compilers.

On-Line File Purpose

Documentation
notes

Describes features that are not covered in the manuals or that
have been modified since publication. The file that contains doc-
umentation notes for this product is called ESQLCOBDOC_7.2.

Release notes Describes feature differences from earlier versions of Informix
products and how these differences might affect current prod-
ucts. This file also contains information about any known prob-
lems and their workarounds. The file that contains the release
notes for this product is called SERVERS_7.2.

Machine notes Describes any special actions that are required to configure and
use Informix products on your computer. Machine notes are
named for the product that is described. The file that contains
the machine notes for this product is called ESQLCOB_7.2.
Introduction 17

Related Reading
Related Reading
For additional technical information on database management, consult the
following books. The first book is an introductory text for readers who are
new to database management, while the second book is a more complex
technical work for SQL programmers and database administrators:

■ Database: A Primer by C. J. Date (Addison-Wesley Publishing, 1983)

■ An Introduction to Database Systems by C. J. Date (Addison-Wesley
Publishing, 1994).

To learn more about the SQL language, consider the following books:

■ A Guide to the SQL Standard by C.J. Date with H. Darwen (Addison-
Wesley Publishing, 1993)

■ Understanding the New SQL: A Complete Guide by J. Melton and A.
Simon (Morgan Kaufmann Publishers, 1993)

■ Using SQL by J. Groff and P. Weinberg (Osborne McGraw-Hill, 1990)

The INFORMIX-ESQL/COBOL Programmer’s Manual assumes that you are
familiar with your computer operating system. If you have limited UNIX
system experience, consult your operating-system manual or a good intro-
ductory text before you read this manual. The following texts provide a good
introduction to UNIX systems:

■ Introducing the UNIX System by H. McGilton and R. Morgan
(McGraw-Hill Book Company, 1983)

■ Learning the UNIX Operating System, by G. Todino, J. Strang, and
J. Peek (O’Reilly & Associates, 1993)

■ A Practical Guide to the UNIX System, by M. Sobell
(Benjamin/Cummings Publishing, 1989)

■ UNIX for People by P. Birns, P. Brown, and J. Muster (Prentice-Hall,
1985)

■ UNIX System V: A Practical Guide by M. Sobell (Benjamin/Cummings
Publishing, 1995)
18 INFORMIX-ESQL/COBOL Programmer’s Manual

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992 on INFORMIX-OnLine Dynamic Server. In addition, many
features of OnLine comply with the SQL-92 Intermediate and Full Level and
X/Open CAE (common applications environment) standards.

Informix SQL-based products are compliant with ANSI SQL-92 Entry Level
(published as ANSI X3.135-1992) on INFORMIX-SE with the following
exceptions:

■ Effective checking of constraints

■ Serializable transactions

Informix Welcomes Your Comments
Please let us know what you like or dislike about our manuals. To help us
with future versions of our manuals, please tell us about any corrections or
clarifications that you would find useful. Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

Or, send a facsimile to the Informix Technical Publications Department at:

415-926-6571
Introduction 19

Informix Welcomes Your Comments
Please include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

We appreciate your feedback.
20 INFORMIX-ESQL/COBOL Programmer’s Manual

1
Chapter
Programming with INFORMIX-
ESQL/COBOL
What Is INFORMIX-ESQL/COBOL?. 1-3

Preparing to Use INFORMIX-ESQL/COBOL 1-4

Creating a COBOL Run-Time Program 1-6
The RM/COBOL-85 Run-Time Program 1-7
The MF COBOL/2 Run-Time Program. 1-9

Using SQL in COBOL Programs 1-9
Embedding SQL Statements in COBOL Programs 1-9
COBOL Statement Format 1-13

Defining Area A 1-13
Defining Area B 1-15
Observing Additional Limitations 1-16

Including Comments 1-17
Reserved Words and Conventions 1-17
Error Handling 1-18

Error Handling Using GET DIAGNOSTICS and SQLSTATE . . 1-18
Error Handling Using the SQLCA Record 1-19
Error Handling and the WHENEVER Statement 1-20

Using Host Variables in SQL Statements 1-21
Declaring Host Variables 1-21
Declaring Group Items and Arrays 1-23

Using Indicator Variables in SQL Statements 1-24
Following Rules for Indicator Variables 1-25
Representing Indicator Variables 1-26
Declaring Indicator Variables 1-26
Indicator Variables and Null Values. 1-27

Generating Compiler Errors After Your Program
Returns Null Values 1-28

Inserting a Null Value Using a Negative Indicator Variable . . 1-28

1-2 INFO
The INFORMIX-ESQL/COBOL Preprocessor 1-29
Supported ESQL/COBOL Preprocessor Instructions 1-29
INCLUDE Statements 1-30

Compiling INFORMIX-ESQL/COBOL Programs 1-32
The esqlcobol Command 1-33
Preprocessing, Compiling, and Linking 1-34

Preprocessing Only 1-35
Displaying the Processing Steps 1-35

Preprocessor Naming Options. 1-36
Checking the Version Number 1-37
Including an Alternative SQLCA Header File 1-38
Checking for ANSI-Standard Syntax 1-39
Checking for Missing Indicator Variables 1-40
Compiling in X/Open Mode 1-41
Redirecting Errors and Warnings 1-41
Limiting the Scope of Cursor Names and Statement Ids . . . 1-41
Defining and Undefining Values While Preprocessing 1-42

Running a Program 1-42

A Sample INFORMIX-ESQL/COBOL Program 1-45
The DEMO1.ECO Program 1-46
Explanation of DEMO1.ECO 1-48
RMIX-ESQL/COBOL Programmer’s Manual

This chapter introduces INFORMIX-ESQL/COBOL and tells you what
you must do to begin working with ESQL/COBOL. It also describes the
structure of an ESQL/COBOL program and introduces basic concepts and
procedures. This chapter discusses the following topics:

■ Setting up INFORMIX-ESQL/COBOL

■ Preparing to use INFORMIX-ESQL/COBOL

■ Creating a COBOL run-time program

■ Embedding SQL statements in COBOL programs

■ Using host and indicator variables in SQL statements

■ Preprocessing INFORMIX-ESQL/COBOL programs

■ Compiling and running INFORMIX-ESQL/COBOL programs

■ An annotated sample INFORMIX-ESQL/COBOL program

What Is INFORMIX-ESQL/COBOL?
INFORMIX-ESQL/COBOL is an SQL application programming interface (SQL
API) that lets you embed SQL statements directly into COBOL code.
ESQL/COBOL consists of a code preprocessor, data type definitions, and
COBOL routines that you can call.

An ESQL/COBOL program can use both static and dynamic SQL statements.
When you use a static SQL statement, the program knows all the components
at compile time. When you use a dynamic SQL statement, the program does
not know all the components at compile time and instead receives all or part
of the SQL statement at run time. Refer to Chapter 6, “Dynamic Management
in INFORMIX-ESQL/COBOL,” for a description of dynamic SQL.
Programming with INFORMIX-ESQL/COBOL 1-3

Preparing to Use INFORMIX-ESQL/COBOL
Your ESQL/COBOL program connects locally or across a network to a
database server. The database server receives SQL statements from your
ESQL/COBOL program, parses those statements, retrieves the requested data
from a database, and sends that data back to your ESQL/COBOL program. For
more information, refer to Chapter 5, “Working with the Database Server,”
for a description of ESQL/COBOL client-server architecture and database
server connections.

Important: INFORMIX-ESQL/COBOL does not support multithreading.

Preparing to Use INFORMIX-ESQL/COBOL
Before you begin working with INFORMIX-ESQL/COBOL, perform the
following steps:

1. Start your computer.

Make sure your computer runs properly and an operating system
prompt appears on your screen.

2. Install your Informix database server.

Make sure you install either the INFORMIX-OnLine Dynamic Server
or INFORMIX-SE database server on your computer according to the
installation instructions that come with your database server
software. For information about the INFORMIX-OnLine Dynamic
Server, refer to the INFORMIX-OnLine Dynamic Server Adminis-
trator’s Guide. For information about the INFORMIX-SE database
server, refer to the INFORMIX-SE Administrator’s Guide.

3. Install your INFORMIX-ESQL/COBOL product.

Make sure you install ESQL/COBOL on your computer according to
the installation instructions that come with the software. Refer to the
UNIX Products Installation Guide for those instructions.
1-4 INFORMIX-ESQL/COBOL Programmer’s Manual

Preparing to Use INFORMIX-ESQL/COBOL
4. Install your COBOL compiler.

Make sure you install a supported COBOL compiler (Micro Focus
[MF] COBOL/2 or Ryan-McFarland [Liant] RM/COBOL-85) on your
system.

Important: Liant now owns Ryan-McFarland, thus Informix supports the Liant
COBOL compiler also known as RM/COBOL-85.

5. Set the UNIX and Informix environment variables.

Make sure you set the ESQL/COBOL environment variables shown in
the following list. Refer to the Informix Guide to SQL: Reference for
complete details of how to set and use the most common UNIX and
Informix environment variables.

❑ The INFORMIXDIR environment variable specifies the directory
where you install your database server files and your
INFORMIX-ESQL/COBOL files.

❑ The PATH environment variable determines the UNIX search
path for your executable programs. Make sure the pathname
includes $INFORMIXDIR/bin and the COBOL compiler
executable.

❑ INFORMIXCOB specifies the program name of the COBOL
compiler that you use. (Refer to your COBOL system manual for
the name of your COBOL compiler.)

❑ INFORMIXCOBDIR contains the directory where the COBOL
run-time library and/or objects reside. Use this environment
variable only when you create a COBOL run-time program.

❑ INFORMIXCOBSTORE identifies the type of storage to use
during compilation in an MF COBOL/2 environment. This
environment variable enables ESQL/COBOL to allow or disallow
certain PICTURE clauses used for mapping to internal C variable
types.

❑ INFORMIXCOBTYPE contains a multicharacter code that
identifies the manufacturer of the COBOL compiler that you use.

❑ DBTIME allows you to support non-ASCII datetime format
specifications. When you plan to call the DATETIME manipu-
lation routines ECO-DTCVASC or ECO-DTTOASC, make sure you
set the DBTIME environment variable in advance.
Programming with INFORMIX-ESQL/COBOL 1-5

Creating a COBOL Run-Time Program
6. Set the Global Language Support (GLS) environment variables
(optional).

INFORMIX-ESQL/COBOL Version 7.2 supports GLS. Setting GLS
environment variables allows you to choose whether to activate GLS
capability and specify certain behaviors.

For specific information on all GLS environment variables and how
to set them, refer to Chapter 2 of the Guide to GLS Functionality. ♦
INFORMIX-ESQL/COBOL Version 7.2 still supports Native Language
Support (NLS). For information on Native Language Support, see
Informix Version 7.1 documentation.

Creating a COBOL Run-Time Program
You must create a COBOL run-time program as soon as you install the
INFORMIX-ESQL/COBOL product. You need to create this run-time program
only once. You need a C compiler and its associated libraries to create the run-
time program.

To create a COBOL run-time program for INFORMIX-ESQL/COBOL, follow the
instructions for your Ryan-McFarland or Micro Focus COBOL compiler, that
you find discussed on the following pages. The exact procedure can vary
depending on the version of the COBOL compiler you install, your particular
computer, and your particular platform.

To create an ESQL/COBOL program, write a COBOL program that includes
SQL statements. You then preprocess your code using the ESQL/COBOL
preprocessor. The ESQL/COBOL preprocessor takes your code, reads all of the
embedded SQL statements, and generates COBOL code. The esqlcobol script
compiles the COBOL code and converts that code into intermediate code.
Figure 1-1 shows how an ESQL/COBOL program becomes an executable
program.

GLS
1-6 INFORMIX-ESQL/COBOL Programmer’s Manual

The RM/COBOL-85 Run-Time Program
.

Warning: The COBOL code that the INFORMIX-ESQL/COBOL preprocessor
generates can change from one release of the product to the next. Therefore, make sure
your ESQL/COBOL programs do not depend on the functionality and features of the
product as implemented in the generated COBOL code. Rather, develop your
programs according to the functionality and features of the product as described in
this manual.

Refer to “Compiling INFORMIX-ESQL/COBOL Programs” on page 1-32 in
this manual for information on how to preprocess and compile
INFORMIX-ESQL/COBOL code to execute with this run-time program.

The RM/COBOL-85 Run-Time Program
The following procedure creates a customized COBOL run-time program for
use with INFORMIX-ESQL/COBOL and RM/COBOL-85.

1. Choose a destination directory for the new run-time program and
make that directory the current directory. The destination directory
represents the directory where you want your application to reside.

2. Copy the sub.c file to the current directory. (You might find sub.c in
the same directory where COBOL was installed on your system.
Contact your system administrator for the exact location.)

Figure 1-1
Relationship Between INFORMIX-ESQL/COBOL and COBOL

ESQL/COBOL
source program

ESQL/COBOL prepro- ESQL/COBOL Run intermediate ESQL/COBOL
program

1 2 C

cesses and compiles the
ESQL/COBOL source
program into a .cob file.

converts the .cob
file into intermediate executes.

code using
run-time program.

code.
Programming with INFORMIX-ESQL/COBOL 1-7

The RM/COBOL-85 Run-Time Program
3. Add the four statements, indicated with an arrow in the following
example, to the sub.c file in the current directory:

.

.

.
/*
 * Define all routines as integer
 */
static int subsys();
static int subren();
static int subdel();
static int subtimes();
static int random();
static int srandom();
#include "rdsdec.c" <=====

struct PROCTABLE LIBTABLE[] =
{

{"SYSTEM",subsys},
{"RENAME",subren},
{"DELETE",subdel},
{"TIMES",subtimes},
{"RAND",random},
{"SRAND",srandom},

#include "rdsproc.c" <=====
{0,0}

};

.

.

.

#include "cobref.h" <==== at end of file
#include "rsubrm85.c" <==== at end of file

4. Compile sub.c with the following command:
makerun

The preceding command creates a new COBOL run-time program,
called runcobol, in the current directory.
1-8 INFORMIX-ESQL/COBOL Programmer’s Manual

The MF COBOL/2 Run-Time Program
The MF COBOL/2 Run-Time Program
To use MF COBOL/2 with INFORMIX-ESQL/COBOL, you do not need to
customize the run-time program. Enter the following command to create the
COBOL run-time program newrun in the current directory:

 makerun newrun

The program name newrun can represent any valid name that you specify.
When you do not specify a run-time program file name, ESQL/COBOL creates
a default run-time program called newrun.

Using SQL in COBOL Programs
As a COBOL programmer, you must acquaint yourself with the following
topics, discussed in this section, to most effectively use SQL statements in
your COBOL programs:

■ Embedding SQL statements in COBOL programs

■ COBOL statement format

■ Including comments

■ Reserved words and conventions

■ Error handling

Make sure you also read the subsequent sections of this chapter that discuss
how to use host variables and indicator variables.

Embedding SQL Statements in COBOL Programs
You embed SQL statements in COBOL programs in the PROCEDURE DIVISION
with the EXEC SQL and END-EXEC keywords. The following full COBOL
sentence includes the phrases EXEC SQL and END-EXEC:

EXEC SQL
SQL-statement

END-EXEC.
Programming with INFORMIX-ESQL/COBOL 1-9

Embedding SQL Statements in COBOL Programs
Certain rules apply when you embed SQL statements in COBOL programs:

■ All SQL statements, including the EXEC SQL and END-EXEC
directives, must reside in Area B of the COBOL program line, as
shown in Figure 1-2.

■ Whereas SQL statements can reside over multiple lines within Area
B, you cannot split the phrases EXEC SQL or END-EXEC over multiple
lines.

Figure 1-3 shows correct and incorrect syntax for EXEC SQL and
END-EXEC.

Figure 1-2
ESQL/COBOL Program-Line Fragment

AREA A AREA B

1 3 4 6 7 8 12 16 20 24 ...

E X E C S Q L
1-10 INFORMIX-ESQL/COBOL Programmer’s Manual

Embedding SQL Statements in COBOL Programs
Figure 1-3
ESQL/COBOL Examples Showing Correct and Incorrect SQL Statement Syntax

INCORRECT

EXEC SQL
BEGIN DECLARE SECTION

END-EXEC. CORRECT

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-
EXEC.

CORRECT

INCORRECT

EXEC SQL CORRECT

END-
EXEC.

EXEC
SQL

INCORRECT

CORRECTEND-EXEC.
Programming with INFORMIX-ESQL/COBOL 1-11

Embedding SQL Statements in COBOL Programs
■ You must terminate the statements with appropriate COBOL
sentence punctuation in that location. (You cannot use a space as a
terminator.) Include a period only when the EXEC SQL block
terminates a COBOL sentence.

Figure 1-4 shows correct and incorrect terminator syntax for SQL
statements.

In your INFORMIX-ESQL/COBOL program, you can use host variables and
indicator variables anywhere that you can use a constant. For more infor-
mation on host variables, refer to “Using Host Variables in SQL Statements”
on page 1-21 in this manual. For more information on indicator variables,
refer to “Using Indicator Variables in SQL Statements” on page 1-24 in this
manual. Refer to individual SQL statements in the Informix Guide to SQL:
Syntax for any exceptions.

Figure 1-4
ESQL/COBOL Examples Showing Correct and Incorrect SQL Terminator Syntax

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL
SELECT * FROM CUSTOMER

END-EXEC.

CORRECT

CORRECT

EXEC SQL.
SELECT * FROM CUSTOMER.

END-EXEC.
INCORRECT

INCORRECTEXEC SQL BEGIN DECLARE SECTION END-EXEC
1-12 INFORMIX-ESQL/COBOL Programmer’s Manual

COBOL Statement Format
COBOL Statement Format
A COBOL source program must exist in standard COBOL reference format so
INFORMIX-ESQL/COBOL can process it. In other words, columns 1 through 6
of each input line must either contain blanks or a line number, and column 7
must contain the COBOL comment and continuation indicator column. The
remainder of the COBOL statement resides in Area A and Area B.

Defining Area A

Area A spans columns 8 through 11 of the statement, as shown in Figure 1-5.

Figure 1-5
ESQL/COBOL Program-Line Fragment Showing Area A

AREA A

1 3 4 6 7 8 12 16 20 24 ...

I

11

I D E N T I F I C A T O N D I V

AREA B
Programming with INFORMIX-ESQL/COBOL 1-13

COBOL Statement Format
The following limitations determine what statements can begin in Area A:

■ In the WORKING-STORAGE SECTION of the DATA DIVISION, only
01-level items (record definitions) and 77-level items can begin in
Area A, as shown in Figure 1-6.

Figure 1-6
ESQL/COBOL Program-Line Fragment Showing Area A

in Relation to the WORKING-STORAGE Section

AREA A

1 3 4 6 7 8 12 16 20 24 ...

R

11

W O R K I N G - S T O A G E S E

7 7 F N A M E P I C X

0 1 E R R - R E C P I C X

AREA B
1-14 INFORMIX-ESQL/COBOL Programmer’s Manual

COBOL Statement Format
■ In the PROCEDURE DIVISION, only procedure names can begin in
Area A, as shown in Figure 1-7.

Defining Area B

Area B extends from column 12 through column 72, as shown in Figure 1-8.
The COBOL compiler ignores columns 73 through 80. With RM/COBOL-85,
when an SQL statement does not start in Area B, a compile-time warning
appears.

Figure 1-7
ESQL/COBOL Program-Line Fragment Showing Area A

in Relation to the Procedure Division

AREA A

1 3 4 6 7 8 12 16 20 24 ...

I

11

P R O C E D U R E D V I S I O N

M A I N - P R O C E D U R E .

P E R F O R M O P E N - D

AREA B
Programming with INFORMIX-ESQL/COBOL 1-15

COBOL Statement Format
If you want to extend Area B beyond column 72, specify the -bigB
ESQL/COBOL preprocessor option.

ESQL/COBOL reports preprocessing errors when you do not use Area A and
Area B correctly.

Observing Additional Limitations

Do not use tabs within your programs. The compiler detects tabs in the first
seven characters. Tabs beyond that point can create unpredictable compi-
lation results when you write lengthy COBOL source lines or SQL statements.

The maximum line length can be 256 characters, depending on your
compiler. The maximum size of a statement name is 132 characters.

Important: In INFORMIX-ESQL/COBOL, the FILLER keyword must identify all filler
items. In RM/COBOL-85, filler items in record structures do not require the keyword
FILLER to appear as the data name in the record declaration.

Figure 1-8
ESQL/COBOL Program-Line Fragment Showing Area B

AREA A

Cols
1-3

Col
7

AREA B

Cols
4-6

Cols
8-11

Cols
12-72

*Cols
73-80

*Your COBOL compiler ignores columns 73 to 80. Specify the -bigB
preprocessor option to use these columns.
1-16 INFORMIX-ESQL/COBOL Programmer’s Manual

Including Comments
Including Comments
In addition to the standard COBOL comment indicator in column 7, you can
use a double dash (--) comment indicator on any ESQL/COBOL line (one
located between the EXEC SQL and END-EXEC phrases). The comment
continues to the end of the line. For example, the following line specifies the
stores7 database and a comment:

EXEC SQL DATABASE STORES7 END-EXEC. -- STORES7 DATABASE OPENED

Reserved Words and Conventions
Refer to a list of reserved words specific to your operating system and the
COBOL programming language when you write ESQL/COBOL code. In
addition, refer to the “Identifier” segment in the Informix Guide to SQL: Syntax
for a list of ANSI reserved words and SQL identifiers that can create problems
when used as the name of the following database objects:

■ Database

■ Table

■ Index

■ Synonym

■ Constraint

The list of reserved words also includes all words beginning with ECO- and
some words beginning with SQL.

SQL statements must begin with the words EXEC SQL and end with END-
EXEC. Refer to “Embedding SQL Statements in COBOL Programs” on
page 1-9 in this manual for details.

You cannot use a backslash (\) to make a single quotation mark (') trans-
parent within a string. You must use two consecutive single quotation marks
('').

The ESQL/COBOL preprocessor uses the COBOL conventions to call COBOL
language subroutines from a COBOL program. (For MF COBOL/2, the prepro-
cessor uses the numbers 0 through 99 as subroutine names. Make sure your
programs do not use these numbers as paragraph or subroutine names with
MF COBOL/2.)
Programming with INFORMIX-ESQL/COBOL 1-17

Error Handling
Error Handling
Make sure every SQL statement executes correctly. You can use the GET
DIAGNOSTICS statement with the SQLSTATE variable to determine the status
of an SQL statement. You can also use the SQL Communications Area
(SQLCA) record to determine the status of an SQL statement. Those error
handling methods are compared in Figure 1-9.

Error Handling Using GET DIAGNOSTICS and SQLSTATE

When you write an INFORMIX-ESQL/COBOL program to the X/Open
standard, you can trap and diagnose X/Open errors using the SQLSTATE
variable and the GET DIAGNOSTICS statement. When an SQL statement
executes, your INFORMIX-ESQL/COBOL program generates a status code
stored in the SQLSTATE variable. The value in SQLSTATE tells you that the SQL
statement succeeded or failed. When an SQL statement fails, you can use the
GET DIAGNOSTICS statement to gather more information on that failure.
Informix recommends that you check for errors using SQLSTATE and that you
diagnose errors using the GET DIAGNOSTICS statement.

Figure 1-9
ESQL/COBOL Error-Handling Methods

GET DIAGNOSTICS

SQLCA RECORD

WHENEVER STATEMENT

Traps errors
and warnings

during
program

execution

Returns nonstandard
Informix proprietary
result code into the

SQLCA record after an
SQL statement

executes

Returns standardized
error status codes into

the SQLSTATE
variable after an SQL
statement executes
1-18 INFORMIX-ESQL/COBOL Programmer’s Manual

Error Handling
The SQLSTATE error status code contains a class code and a subclass code. The
following list contains the valid codes for SQLSTATE:

00000 Successful execution of the SQL statement

01000 Successful execution with a warning that the effect was
limited or undesirable

02000 Successful execution but that your program found no
data

Other values The SQL statement failed

The DEMO1.ECO, DEMO2. ECO, and DEMO3.ECO programs illustrated in this
manual contain an ERROR-PROCESS procedure that uses the SQLSTATE
variable and the GET DIAGNOSTICS statement to handle error checking. You
can find information about the syntax of GET DIAGNOSTICS in the Informix
Guide to SQL: Syntax. You can find complete information about the role,
structure, declaration, and use of GET DIAGNOSTICS and SQLSTATE in
Chapter 4, “Error Handling,” in this manual.

Error Handling Using the SQLCA Record

INFORMIX-ESQL/COBOL includes the SQLCA record in each ESQL/COBOL
program automatically. The record varies, depending on the COBOL compiler
you use.

INFORMIX-ESQL/COBOL returns a result code into the SQLCA record after
executing every SQL statement.

Tip: Although you can use the SQLCA record to handle errors, Informix recommends
that you use the GET DIAGNOSTICS statement and the SQLSTATE variable as the
standard error-handling components.
Programming with INFORMIX-ESQL/COBOL 1-19

Error Handling
The SQLCODE OF SQLCA component of the SQLCA record can contain the
values shown in Figure 1-10 to indicate that an SQL statement succeeded.

By taking corrective action when SQLCODE OF SQLCA contains a negative
value, you can recover from the failure of an intended database modification.

By checking for SQLCODE OF SQLCA = SQLNOTFOUND, you can write your
code to process the results of queries only when your program returns rows.

For more information about error handling using the SQLCA record, refer to
Chapter 4, “Error Handling.”

Error Handling and the WHENEVER Statement

You can also use the WHENEVER statement in your ESQL/COBOL code to trap
errors and warnings during the execution of SQL statements. When you
encounter various error and warning conditions, you can include a
WHENEVER statement that specifies whether the program continues, stops,
or transfers control to another procedure or routine.

Refer to the Informix Guide to SQL: Syntax for a detailed understanding of the
syntax and usage for the WHENEVER statement. Also refer the discussion of
error handling in the Informix Guide to SQL: Tutorial and Chapter 4, “Error
Handling.”

Figure 1-10
Values Contained in SQLCODE of SQLCA

SQLCODE value Description

zero For a successful execution of SQL statements

a negative value For an unsuccessful execution of an SQL statement

SQLNOTFOUND (100) For a successful query that returns no rows
1-20 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Host Variables in SQL Statements
Using Host Variables in SQL Statements
Host variables represent normal COBOL variables that you use in SQL state-
ments. They are not case-sensitive in COBOL. When you use a host variable
in an SQL statement, precede its name with a colon (:) or a dollar sign ($).
The host variable HOSTVAR, for example, can appear in an SQL statement as
either :HOSTVAR or $HOSTVAR.

If you must qualify the host variable name because it appears more than once
in WORKING-STORAGE, use normal COBOL qualification syntax. For
example, when HOSTVAR represents part of the record name HOSTREC, make
sure you represent HOSTVAR in an SQL statement as :HOSTVAR OF HOSTREC
or $HOSTVAR OF HOSTREC.

INFORMIX-ESQL/COBOL supports level 01 through level 49 COBOL variables
and record types. The product also supports COBOL variable levels 77 and 88,
provided that your COBOL compiler supports those variable levels.

You associate host variables with SQL data types because those variables
appear in SQL statements. For a discussion of host variable data types and
their correspondence with SQL column data types, refer to “Choosing Data
Types for Host Variables” on page 2-4 in this manual and also the Informix
Guide to SQL: Reference.

Declaring Host Variables
The host variable declarations reside between the statements EXEC SQL
BEGIN DECLARE SECTION END-EXEC and EXEC SQL END DECLARE SECTION
END-EXEC in the COBOL WORKING-STORAGE SECTION, as shown in the
following example:

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
77 HOSTINT PIC S9(10) COMP-5.
77 HOSTMONEY PIC S9(5)V99 COMP-5.
77 HOSTFLOAT PIC S9(6)V999 COMP-5.
77 HOSTCHAR PIC X(80).

EXEC SQL END DECLARE SECTION END-EXEC.
Programming with INFORMIX-ESQL/COBOL 1-21

Declaring Host Variables
********** OTHER NON-HOST COBOL VARIABLES ******
01 MISC-HOST-VARS.

.

.

.

The statements EXEC SQL BEGIN DECLARE SECTION END-EXEC and EXEC
SQL END DECLARE SECTION END-EXEC must each reside on a single line.

Important: Multiple host variable declaration sections can exist in an ESQL/COBOL
program.

INFORMIX-ESQL/COBOL lets you declare host variables and assign them
initial values with normal COBOL VALUE clauses, as shown in the following
example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
05 VARNAME PIC S9(04) COMP-5 VALUE -12.
05 SRCH-CUSTOMER PIC X(20) VALUE SPACES.
05 OPENDATE DATE_TYPE VALUE "01/15/1994".

EXEC SQL END DECLARE SECTION END-EXEC.
01 MORE-HOST-VARS.

The INFORMIX-ESQL/COBOL preprocessor does not check VALUE clauses for
valid COBOL syntax. Instead, INFORMIX-ESQL/COBOL passes VALUE clauses
to the COBOL compiler, and that compiler diagnoses any errors.

You can define as many host variables as you need, up to the limit set for the
symbol table of your COBOL compiler. Only host variables (variables actually
referenced in SQL statements) need to appear in the SQL DECLARE SECTION.
You must declare regular program variables in the WORKING-STORAGE
SECTION outside the SQL DECLARE SECTION.

INFORMIX-ESQL/COBOL does not recognize the standard COBOL features
listed in Figure 1-11. When you include any of the following features in a host
variable declaration, the preprocessor generates a syntax error.

GLS
1-22 INFORMIX-ESQL/COBOL Programmer’s Manual

Declaring Group Items and Arrays
Figure 1-11
COBOL Clauses That ESQL/COBOL Does Not Recognize

The preceding clauses apply only to host variables. Variables declared
outside EXEC SQL BEGIN DECLARE SECTION END-EXEC and EXEC SQL END
DECLARE SECTION END-EXEC statements can include the clauses listed in
Figure 1-11.

The language used for declaring host variables is locale-specific. The default
locale for declaring host variables is U.S. ASCII English. For more locale infor-
mation, see Chapter 6 of the Guide to GLS Functionality. ♦

Declaring Group Items and Arrays
You can declare group items as INFORMIX-ESQL/COBOL host variables in the
WORKING-STORAGE SECTION. In ESQL/COBOL statements, you can use the
group item name in place of the names of the component data items, as
shown in the following example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 CUST-REC.

05 C-NO PIC S9(08) COMP-5.
05 FNAME PIC X(20).
05 LNAME PIC X(20).

EXEC SQL END DECLARE SECTION END-EXEC.

Feature Meaning

IS EXTERNAL Variable available to every program in the unit that de-
scribes it

IS GLOBAL Variable available to every program within the program
that declares it

RENAMES Creates an alternative record group

SYNCHRONIZED
RIGHT

Defines memory alignment
Programming with INFORMIX-ESQL/COBOL 1-23

Using Indicator Variables in SQL Statements
The preceding declaration makes the following two code segments
equivalent:

EXEC SQL
INSERT INTO CUSTOMER VALUES (:CUST-REC)

END-EXEC.

EXEC SQL
INSERT INTO CUSTOMER

VALUES (:C-NO OF CUST-REC, :FNAME OF CUST-REC,
:LNAME OF CUST-REC)

END-EXEC.

ESQL/COBOL understands and supports the declaration of arrays of
variables. You can use elements of an array within ESQL/COBOL statements.
For example, when you declare the following array:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
05 MONTH-NAMES PIC X(10) OCCURS 12 TIMES.
EXEC SQL END DECLARE SECTION END-EXEC.

you can use the following code:

MOVE 1 TO MONTH-INDEX.
PERFORM LOAD-MONTHS 12 TIMES.
.
.
.

LOAD-MONTHS.
EXEC SQL

FETCH MONTHNM_CURSOR INTO :MONTH-NAMES (MONTH-INDEX)
END-EXEC.
ADD 1 TO MONTH-INDEX.

Using Indicator Variables in SQL Statements
You can define indicator variables with host variables for the following
situations:

■ When your program retrieves a non-null SQL value into a host
variable of CHARACTER data type, your program can truncate the
value to fit into the variable.

■ When a host variable of numeric data type causes a conversion error.

GLS
1-24 INFORMIX-ESQL/COBOL Programmer’s Manual

Following Rules for Indicator Variables
Following Rules for Indicator Variables
You can define indicator variables as any valid host variable data type except
DATETIME or INTERVAL. You call the associated host variables main variables.
Use the following rules for defining indicator variables:

■ For variables of CHARACTER data type, make sure you define an
indicator variable that ESQL/COBOL sets to the defined size of the
SQL column, in bytes, before truncation (if truncation occurs).

■ For variables of numeric data type, make sure you define an
indicator variable that ESQL/COBOL sets to zero when no conversion
error occurs, or to nonzero when a conversion error does occur.

■ For character fields, when you fetch a value longer than the size of
the host variable, your program sets the SQLWARN1 OF SQLWARN OF
SQLCA field to W, and the indicator contains the actual length of the
value in the database.

■ For noncharacter fields using values fetched into character type host
variables, when the character conversion yields more characters than
the size of the host variable, your program sets the SQLWARN1 OF
SQLWARN OF SQLCA field to W. In addition, your program fills the
host variable with asterisks (*) and sets the indicator to 1.

■ Your program sets an indicator variable to -1 when a query returns
a null value.

Tip: For simplicity and ease of programming, Informix recommends that you use
only indicator variables of the INTEGER type.

The language used for indicator variables is locale-specific. For more locale
information, see Chapter 6 of the Guide to GLS Functionality. ♦
Programming with INFORMIX-ESQL/COBOL 1-25

Representing Indicator Variables
Representing Indicator Variables
You can represent an indicator variable in an SQL statement in either of two
ways:

■ Place a colon (:) between the main variable name and the indicator
variable name, with no spaces. For example, when HOSTVARIND
represents the indicator variable for the main variable HOSTVAR, you
can represent the pair in an SQL statement as either
:HOSTVAR:HOSTVARIND or $HOSTVAR:HOSTVARIND.

■ Place the INDICATOR keyword, with spaces, between the main
variable name and the indicator variable name. (This use of the
INDICATOR keyword conforms to the ANSI standard.) For example,
when HOSTVARIND represents the indicator variable for the main
variable HOSTVAR, you can represent the pair in an SQL statement as
either :HOSTVAR INDICATOR :HOSTVARIND or $HOSTVAR
INDICATOR :HOSTVARIND.

Declaring Indicator Variables
The following example shows how to declare indicator variables:

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
05 NAME PIC X(15).
05 COMPANY-NAME PIC X(19).
05 NAME-INDICATOR PIC S9(5) COMP-5.
05 COMP-INDICATOR PIC S9(5) COMP-5.

EXEC SQL END DECLARE SECTION END-EXEC.
01 MISC-HOST-VARS.
...
PROCEDURE DIVISION.
...

EXEC SQL
SELECT LNAME, COMPANY

INTO :NAME:NAME-INDICATOR,
:COMPANY-NAME:COMP-INDICATOR

FROM CUSTOMER
WHERE CUSTOMER_NUM = 105

END-EXEC.
1-26 INFORMIX-ESQL/COBOL Programmer’s Manual

Indicator Variables and Null Values
If you define lname in the customer table with a length longer than 15
characters, NAME-INDICATOR contains the actual length of the lname
column. The NAME string contains the first 15 characters. When the value of
lname where the customer_num = 105 is shorter than 15 characters, the
remaining characters become trailing blanks. Therefore, ESQL/COBOL
truncates only trailing blanks and the host variable NAME contains all the
significant data. Nevertheless, your program sets the SQLSTATE class code to
01 and sets SQLWARN0 OF SQLWARN OF SQLCA to W. When you use
SQLSTATE in your program, make sure you use the GET DIAGNOSTICS
statement to check for a specific error warning message.

If company has a null value for this same customer_num, then
COMP-INDICATOR has a value of -1. You cannot predict the contents of the
COMPANY-NAME data item.

If you set the DBNLS and LANG environment variables, you can use indicator
variables in local character sets, as shown in the following example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
05 HÔTE PIC X(24).

...
05 HÔTE_IND PIC S9(10).

...
EXEC SQL END DECLARE SECTION END-EXEC.
...

Indicator Variables and Null Values
An SQLSTATE value of 01004 signals the occurrence of a truncation error.

The SQLCA record can also signal the occurrence of a character truncation (or
a conversion error). The ESQL/COBOL library call sets SQLCODE OF SQLCA to
some negative value indicating the error. When your program does not
return a neither null or truncated value, the program sets the indicator
variable value to zero (0).

However, the SQLSTATE value, or the value of the SQLCODE OF SQLCA, does
not provide enough information to determine the host variable that
generated the error. You must examine the indicator variables associated
with the host variables to determine the specific host variable affected and
the extent of the error or truncation.
Programming with INFORMIX-ESQL/COBOL 1-27

Indicator Variables and Null Values
Because a null value does not always represent a definite value among other
values, you must find out when an ESQL/COBOL statement returns a null
variable to a host variable. When a host variable corresponds to a database
column that allows null values, you must define an indicator variable in
association with that host variable.

When an ESQL/COBOL statement returns a null value to a host variable
(through the INTO clause of a SELECT or FETCH statement) and you define an
indicator variable, the indicator variable has a value of -1. The actual value
in the host variable does not always represent a meaningful COBOL value.

Generating Compiler Errors After Your Program Returns Null Values

If you do not assign an indicator variable to the host variable and your
program returns a null value, ESQL/COBOL can generate an error (or no
error) depending on how you compile the program.

■ If you compile the program using the -icheck flag, ESQL/COBOL
generates an error and sets the SQLSTATE class field to a value greater
than 02. It also sets SQLCODE OF SQLCA to a negative value when
your program returns a null value and no indicator variable exists.
(For more information, refer to Chapter 4, “Error Handling.” in this
manual.)

■ If you compile the program without using the -icheck flag,
ESQL/COBOL does not generate an error when your program returns
a null value and no indicator exists.

Inserting a Null Value Using a Negative Indicator Variable

As an alternative to using the NULL keyword in an INSERT statement, you
can use a host variable with a negative indicator variable to place a null value
in a particular column of an added row. The following example shows how
to insert a null value using a negative indicator variable:

MOVE -1 TO ORD-SHIP-INDICATOR.
EXEC SQL

INSERT INTO ORDERS (ORDER_NO, SHIP_DATE)
VALUES (:ORDER-NO, :ORD-SHIP-DATE:ORD-SHIP-INDICATOR)

END-EXEC.

The ORD-SHIP-DATE value is null because it is not valid for a new order.
1-28 INFORMIX-ESQL/COBOL Programmer’s Manual

The INFORMIX-ESQL/COBOL Preprocessor
The INFORMIX-ESQL/COBOL Preprocessor
You must preprocess your programs that include ESQL/COBOL statements
before you can use your COBOL compiler to compile them. The ESQL/COBOL
preprocessor converts the embedded SQL statements into COBOL language
code before the COBOL compiler receives them.

The ESQL/COBOL preprocessor works in the following two stages:

Stage 1 acts as a preprocessor for ESQL/COBOL.

Stage 2 converts all the embedded SQL code to COBOL code.

Stages 1 and 2 of the ESQL/COBOL preprocessor mirror the COBOL language
preprocessor and compiler stages of compilation, as shown on page 1-7.
ESQL/COBOL Stage 1 preprocessor statements and COBOL preprocessor
statements differ only in that the former take effect during input to the
ESQL/COBOL preprocessor.

You can use Stage 1 of the ESQL/COBOL preprocessor to incorporate other
files into the source file. You must include files necessary for compiling
embedded SQL statements before Stage 2 of the preprocessor starts. You
cannot use the normal COBOL preprocessor to conditionally compile
ESQL/COBOL statements because ESQL/COBOL already processed those
statements in Stage 1.

Supported ESQL/COBOL Preprocessor Instructions
The ESQL/COBOL preprocessor supports the following instructions. Use
them to include files in your programs, to define values, and for conditional
compilation:

INCLUDE includes a source file in the input at that point.
DEFINE specifies a compile-time name flag.
UNDEF removes an existing compile-time name flag.
IFDEF tests for a name flag and executes subsequent statements only

when the name flag has been defined.
IFNDEF tests for a name flag and executes subsequent statements only

when the name flag has not been defined.
Programming with INFORMIX-ESQL/COBOL 1-29

INCLUDE Statements
Each statement used as an instruction for the ESQL/COBOL preprocessor
must begin with the keywords EXEC SQL and end with the keywords
END-EXEC, as shown in the following example:

EXEC SQL DEFINE MAXROWS 25 END-EXEC.

The DEFINE statement can define only INTEGER constants. It does not
support definition of string constants or parameterized macros.

The preprocessor does not support a generalized IF statement, only the IFDEF
and IFNDEF statements that test whether a name has been defined. In the
following example, ESQL/COBOL compiles the BEGIN WORK statement only
after you define the name USE-TRANSACTIONS:

EXEC SQL DEFINE MAXROWS 25 END-EXEC.
EXEC SQL IFDEF USE-TRANSACTIONS END-EXEC.
EXEC SQL BEGIN WORK END-EXEC.
EXEC SQL ENDIF END-EXEC.

The following example shows how to use ELIF:

EXEC SQL IFDEF ONLINE END-EXEC.
EXEC SQL CREATE DATABASE NEWSTORE WITH LOG END-EXEC.
EXEC SQL ELIF SE END-EXEC.
EXEC SQL CREATE DATABASE TMPSTORE WITH LOG IN '/tmp/log' END-
EXEC.
EXEC SQL ENDIF END-EXEC.

INCLUDE Statements
You can use the EXEC SQL INCLUDE preprocessor statement to include other
ESQL/COBOL files in your program. You declare an INCLUDE statement in
the data division. You can nest EXEC SQL INCLUDE statements to a depth of
eight.

ELSE begins an alternative section to an IFDEF or IFNDEF condition.
ELIF begins an alternative section to an IFDEF or IFNDEF condition

that checks for the presence of another IFDEF.
ENDIF closes an IFDEF or IFNDEF condition.
1-30 INFORMIX-ESQL/COBOL Programmer’s Manual

INCLUDE Statements
The EXEC SQL INCLUDE statement allows you to include files that contain
only SQL statements. The following diagram illustrates the syntax of the
EXEC SQL INCLUDE statement.

filename represents the name of the file that you want to include.

pathname represents the full and complete pathname of a file you
want to include.

SQLCA includes the SQLCA file.

You can write an INCLUDE statement using the name of the file or the
pathname. You must use quotation marks around the pathname. The
following syntax examples show how you specify a file name or a pathname
in the EXEC SQL INCLUDE preprocessor statement:

EXEC SQL INCLUDE filename END-EXEC.

EXEC SQL INCLUDE 'pathname' END-EXEC.

When you use the first form (with no quotes), the preprocessor looks for the
included file in the following sequence:

1. In the current directory

2. In the $INFORMIXDIR/incl/esql directory, where $INFORMIXDIR
represents the Informix installation directory (Refer to the discussion
of environment variables in the Informix Guide to SQL: Reference for
more information on INFORMIXDIR.)

3. In the /usr/include directory

Important: The -Ipathname preprocessor option, described in the following section,
expands the search range for INCLUDE directories. The preprocessor also searches the
current directory, pathname, $INFORMIXDIR/incl/esql, and /usr/include.

EXEC SQL INCLUDE SQLCA

'pathname'

filename

END-EXEC.
Programming with INFORMIX-ESQL/COBOL 1-31

Compiling INFORMIX-ESQL/COBOL Programs
The INFORMIX-ESQL/COBOL preprocessor puts the included file in the
current file at the position of the INCLUDE statement. Then the preprocessor
processes that file and passes it on to the COBOL compiler.

You can use the INCLUDE statement in a way similar to the COBOL statement
COPY. INCLUDE obtains common code from the COBOL source-statement
library at compile time. However, INCLUDE brings in statements from the
requested file before INFORMIX-ESQL/COBOL processes your current file.

The source files can contain COBOL COPY statements in addition to
ESQL/COBOL INCLUDE statements. Data descriptions imported using
COBOL COPY statements do not affect ESQL/COBOL statements but take
effect in their usual way when the COBOL compiler receives the source file.

Compiling INFORMIX-ESQL/COBOL Programs
This section discusses how to use the ESQL/COBOL preprocessor, how
to execute the object files that the compiler creates, and how to link
ESQL/COBOL libraries to your own libraries.

After you preprocess your programs that include ESQL/COBOL statements,
you can compile the resulting source file with your COBOL compiler to create
an object file. Then, to execute the object file, invoke a COBOL run-time
program that you modified to include the INFORMIX-ESQL/COBOL libraries.
(Refer to “Creating a COBOL Run-Time Program” on page 1-6.)

To preprocess and compile a COBOL program that contains ESQL/COBOL
statements, enter esqlcobol on the command line, provide the name of the
source file (a name that must end with the .eco extension), and include any
arguments. The esqlcobol shell script invokes the ESQL/COBOL
preprocessor.

INFORMIX-ESQL/COBOL establishes communications and network connec-
tions during compilation. For more information on how ESQL/COBOL estab-
lishes communication and network connections, refer to the INFORMIX-SE
Administrator’s Guide or the INFORMIX-OnLine Dynamic Server Adminis-
trator’s Guide.
1-32 INFORMIX-ESQL/COBOL Programmer’s Manual

The esqlcobol Command
INFORMIX-ESQL/COBOL supports NLS. However, some COBOL compilers
reject non-English identifiers in NLS mode because of totally incompatible
underlying code sets. This problem can occur when you attempt to compile
code previously processed using a different LANG setting.

The esqlcobol Command
The following pages illustrate and describe the syntax and options for
preprocessor and compiler commands.

esqlcobol

-n -e
Pre-

processor
Naming
Options
p. 1-36

-native

-o outfile

-esqlfile.eco

otherobjs.o

-e performs only the preprocessor step. It produces a pure COBOL
source file with the extension .cob or .cbl (RM/COBOL-85).

esqlfile.eco the name of the source file that contains your ESQL/COBOL
program and COBOL code. When you omit the .eco extension,
ESQL/COBOL does not compile the program.

-n displays on the screen the steps of the preprocessor/compi-
lation process but does not perform them.

-native generates native code, provided that your compiler can create
a native executable file instead of an intermediate file.
Programming with INFORMIX-ESQL/COBOL 1-33

Preprocessing, Compiling, and Linking
When you enter esqlcobol on the command line without an argument, the
supported options display on the screen. However, the option -esqlargs
represents the preprocessor naming options listed on page 1-36. You do not
type -esqlargs to use these options. Instead, you type the option or options
you want to invoke.

Preprocessing, Compiling, and Linking
In the esqlcobol command-line syntax, outfile represents the name of the
intermediate or executable output file and esqlfile.eco represents your
program source file that includes both COBOL and SQL statements. When you
set the INFORMIXDIR environment variable correctly and no other
processing anomalies occur, processing occurs in the following sequence:

1. The esqlcobol command executes any precompile instructions and
preprocesses the embedded SQL statements in esqlfile.eco.

2. The esqlcobol command then produces an ASCII file of COBOL
statements named esqlfile.cob or esqlfile.cbl (RM/COBOL-85).

3. The esqlcobol command then passes esqlfile.cob, esqlfile.cbl, or
another COBOL source file straight through to the COBOL compiler.
It produces interpreted files that require the extension .exe (MF
COBOL/2) or the extension .INT (RM/COBOL-85).

4. ESQL/COBOL then links these files with the appropriate
ESQL/COBOL library routines along with other COBOL files and any
other system libraries that you explicitly include on the esqlcobol
command line.

You can include a variety of preprocessor naming options and/or compiling
and linking options in your command line.

-o outfile specifies the next argument as program name (compiler-
specific)

otherobjs.o represents C objects that you want to include in your program.
You must first use the -native option to include C objects when
you compile your program. For more information on
including C objects, your MF COBOL/2 compiler documen-
tation.
1-34 INFORMIX-ESQL/COBOL Programmer’s Manual

Preprocessing, Compiling, and Linking
Preprocessing Only

You can preprocess your ESQL/COBOL program without compiling and
linking. To preprocess your code, include the -e flag in the esqlcobol
command. The preprocessor creates a COBOL program. For example, to
preprocess the program that resides in the file demo1.eco, use the following
command:

esqlcobol -e demo1.eco

Displaying the Processing Steps

Use the -n flag to display the steps for preprocessing and compiling without
actually executing them, as shown in the following example:

esqlcobol -n demo1.eco
Programming with INFORMIX-ESQL/COBOL 1-35

Preprocessor Naming Options
Preprocessor Naming Options
The following diagram shows the syntax for the esqlcobol preprocessor
naming options.

-xopen -ansi -t type -icheck -log logfile

-local

-EDname -EUname

 = value

-Ipathname
-bigB -esqlout outfile -nowarn

-comp89

-V

Preprocessor
Naming
Options

-ansi checks for Informix extensions to ANSI-standard SQL syntax
and sends warning messages to the screen.

-bigB extends the COBOL Area B beyond column 72. The -bigB
option continues EXEC SQL statements that exceed 72
characters.

-comp89 allows you to include an alternative SQLCA header file.
-EDname sets a name flag that the UNDEFINE, IFDEF, and IFNDEF

preprocessor instructions can use.
-esqlout outfile changes the name of the preprocessed output file to a name

you specify.
1-36 INFORMIX-ESQL/COBOL Programmer’s Manual

Preprocessor Naming Options
You can use any of these preprocessor options when you preprocess only or
when you preprocess, compile, and link.

Checking the Version Number

Use the -V argument to learn the version number of your ESQL/COBOL
preprocessor, as shown in the following example:

esqlcobol -V

-EUname removes an existing name flag specified in the DEFINE
preprocessor instruction.

-icheck generates code to check for a null value returned to a host
variable that lacks an associated indicator variable, and
generates an error when such a case exists.

-Ipathname expands the search range for include directories. The
preprocessor also searches the current directory, the
pathname, $INFORMIXDIR/incl, and /usr/include.

-local keeps the dynamic cursor names and statement identifier
names local to the file that defines those names.

-log logfile logs the error and warning messages in the specified file
instead of printing to standard output.

-nowarn suppresses warning messages from the preprocessor; does
not affect error messages.

-t type specifies the type of compiler being used, as shown in the
following examples:
MF COBOL/2 -t mf2
RM/COBOL-85-t rm85

-V displays the version number of your ESQL/COBOL
preprocessor.

-xopen sets the mode of the ESQL/COBOL program being compiled
to X/Open. The default setting for -xopen is normal mode.

=value lets you assign an INTEGER value to the name flag. For
example, -EDMACNAME=62.
Programming with INFORMIX-ESQL/COBOL 1-37

Preprocessor Naming Options
Including an Alternative SQLCA Header File

To include an alternative SQLCA header file, choose the -comp89 option. This
option allows you to define your own SQLCODE variable without causing a
conflict with the Informix-defined SQLCODE variable. For more information
on SQLCA and SQLCODE, refer to Chapter 4, “Error Handling.”

If you use an MF COBOL/2 compiler, the -comp89 option allows the
preprocessor to specify a header file called sqlca.mf2.alt, as shown in the
following example:

**
*
* Title: sqlca.mf2.alt
* Sccsid: @(#)sqlca.mf2.alt 9.1 1/14/93 13:44:52
* Description:
* SQLCA include file for Micro Focus COBOL/2
**
*
77 SQLNOTFOUND PIC S9(10) VALUE 100.
01 SQLCA.

05 IXSQLCODE PIC S9(9) COMPUTATIONAL-5.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMPUTATIONAL-5.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMPUTATIONAL-5.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).
1-38 INFORMIX-ESQL/COBOL Programmer’s Manual

Preprocessor Naming Options
If you use an RM/COBOL-85 compiler, the -comp89 option allows the
preprocessor to specify a header file called sqlca.rm.alt, as shown in the
following example:

**
*
* Title: sqlca.rm.alt
* Sccsid: @(#)sqlca.rm.alt 9.1 1/14/93 13:45:07
* Description:
* SQLCA include file for Ryan McFarland COBOL
**
*
77 SQLNOTFOUND PIC S9(10) VALUE 100.
01 SQLCA.

05 IXSQLCODE PIC S9(9) COMPUTATIONAL-4.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMPUTATIONAL-1.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMPUTATIONAL-4.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).

The ESQL/COBOL preprocessor knows the correct header file to specify
depending on the compiler you use and whether you specify the -comp89
option.

Checking for ANSI-Standard Syntax

You can check for Informix extensions to ANSI-standard SQL syntax in the
following ways when you compile an INFORMIX-ESQL/COBOL program:

■ You can set the DBANSIWARN environment variable before you
proceed. Thereafter, every time you compile or run a program,
ESQL/COBOL checks the program automatically for ANSI compati-
bility. (Refer to the Informix Guide to SQL: Reference for information on
how to set DBANSIWARN.)
Programming with INFORMIX-ESQL/COBOL 1-39

Preprocessor Naming Options
■ Even when you do not set DBANSIWARN, you can include the -ansi
option at compile time whenever you want to check a program for
ANSI compatibility. The -ansi flag tells the compiler to verify that all
SQL statements meet ANSI standards, as shown in the following
example:
esqlcobol -ansi demo1.eco

Warning: You cannot use the -ansi option at run time.

If you compile with the -ansi flag, esqlcobol generates warning messages on
the screen when you compile a program that either contains Informix exten-
sions to ANSI-standard syntax or uses ANSI reserved words as identifiers.
Refer to the Informix Guide to SQL: Syntax for a list of ANSI reserved words.

If you compile a program with both the -ansi and -xopen flags,
INFORMIX-ESQL/COBOL generates warning messages for both.

Whether or not you compile with the -ansi flag, your compiled programs can
make run-time checks on Informix extensions to ANSI-standard SQL syntax
(even when you do not set the DBANSIWARN environment variable). To
make a run-time check, use the SQLCA record. INFORMIX-ESQL/COBOL sets
the SQLWARN5 OF SQLWARN OF SQLCA field to W when a non ANSI-
compliant statement executes. (For more information, refer to Chapter 4,
“Error Handling.”)

Checking for Missing Indicator Variables

The -icheck option generates code in your program that returns a run-time
error when an SQL statement returns a null value to a host variable that lacks
an associated indicator variable, as shown in the following example:

esqlcobol -icheck demo1.eco

If you do not compile using the -icheck flag, INFORMIX-ESQL/COBOL does
not generate an error in this situation (Refer to “Indicator Variables and Null
Values” on page 1-27 in this manual).
1-40 INFORMIX-ESQL/COBOL Programmer’s Manual

Preprocessor Naming Options
Compiling in X/Open Mode

INFORMIX-ESQL/COBOL processes your program using the X/Open set of
SQL codes when you include the -xopen option on the command line, as
shown in the following example:

esqlcobol -xopen dynafile.eco

When you invoke the esqlcobol compiler script using the -xopen flag,
INFORMIX-ESQL/COBOL uses the X/Open SQL codes when a GET
DESCRIPTOR or SET DESCRIPTOR statement executes. Refer to the discussion
of these SQL statements in the Informix Guide to SQL: Syntax.

If you include the -xopen option on the command line, ESQL/COBOL prepro-
cesses your program using the X/Open set of SQL codes. When you use
X/Open SQL in an ESQL/COBOL program, you must recompile all previous
programs to make use of the new dynamic SQL statements. You must do this
to maintain backward compatibility. When you do not use X/Open SQL in
your current ESQL/COBOL programs, ESQL/COBOL does not require you to
recompile existing programs.

If you compile a program using both the -xopen and -ansi flags,
ESQL/COBOL generates warning messages for both.

Redirecting Errors and Warnings

ESQL/COBOL automatically sends errors and warnings, generated when you
run esqlcobol, to standard output. When you want the errors and warnings
put in a file, use the -log option with the file name, as shown in the following
example:

esqlcobol -log myerr.err -e mysource.eco

Limiting the Scope of Cursor Names and Statement Ids

If you use the -local option, dynamic cursor names and statement ids that
you declare in a file become local to that file. When you do not use the -local
option, cursor names and statement ids automatically become global entities,
as shown in the following example:

esqlcobol -local dynafile.eco
Programming with INFORMIX-ESQL/COBOL 1-41

Running a Program
If you use the -local option, you must recompile the source files every time
you rename them. Also, you must make the first 18 characters of the
combined cursor names and file names unique. When you mix files compiled
with and without the -local flag, you get unpredictable results.

Defining and Undefining Values While Preprocessing

You can use the -ED and -EU options to define or undefine values during
preprocessing. Do not put a space between ED and the symbol name or
between EU and the symbol name, as shown in the following example:

esqlcobol -EDMACNAME=62 mysource.eco

esqlcobol -EUMACNAME mysource.eco

You can use -EDname like you use DEFINE name. INFORMIX-ESQL/COBOL
processes the -ED option before processing the code in your source file.

The -EU option is equivalent to using an UNDEF statement but has a global
effect on the whole file.

Running a Program
The following steps outline the simplest way to preprocess and execute an
INFORMIX-ESQL/COBOL program:

1. Write your program. Make sure the source file has the .eco extension.

2. Preprocess and compile your program using the following syntax:
esqlcobol filename.eco

where esqlcobol represents the preprocessor command and
filename.eco represents the name of your source code file.

3. If your program has compilation errors, debug your program and
repeat step 2.
1-42 INFORMIX-ESQL/COBOL Programmer’s Manual

Running a Program
4. Run the program as shown in the following examples:

❑ If you use RM/COBOL-85, use the following syntax:
runcobol filename

where runcobol represents the name of the COBOL run-time
program, and filename represents the name of your object file.

❑ If you use MF COBOL/2, use the following syntax:
newrun filename

where newrun represents the name of the COBOL run-time
program, and filename represents the name of your object file.

The preceding examples assume that the name, runcobol or newrun,
represent the name of the COBOL run-time program that you created in the
current directory. You can, however, substitute an alternate run-time
program name. Refer to “Creating a COBOL Run-Time Program” on page 1-6
in this manual for information on how to create and name a run-time
program for your MF COBOL/2 or RM/COBOL-85 compiler.

Figure 1-12 summarizes the process for compiling and running an
ESQL/COBOL program.
Programming with INFORMIX-ESQL/COBOL 1-43

Running a Program
Figure 1-12
How to Compile and Run an INFORMIX-ESQL/COBOL Program

Write Program. Give
source file .eco

extension.

If errors occur,
debug and

correct your
source code.

Execute the program.

If you are running
RM/COBOL-85, use

this syntax:
runcobol filename

If you are running
MF COBOL/2, use

this syntax:
newrun filename

Preprocess source file.

If program compiles
and runs, but does

not work as
expected, correct
your source code.

Successful executable
program.
1-44 INFORMIX-ESQL/COBOL Programmer’s Manual

A Sample INFORMIX-ESQL/COBOL Program
A Sample INFORMIX-ESQL/COBOL Program
The DEMO1.ECO example beginning on page 1-46 represents one of the
sample programs included with your INFORMIX-ESQL/COBOL software. You
can create DEMO1.ECO when you respond affirmatively to the esqlcobdemo7
prompt as discussed in “Demonstration Database” in the Introduction to this
manual. The program works with the MF COBOL/2 and RM/COBOL-85
compilers.

That sample program illustrates most of the concepts that were covered in
this chapter, such as a simple use of INCLUDE files, identifiers, host variables,
and embedded SQL statements to access and display data from a database. It
also shows simple error handling with the SQLSTATE value and the GET
DIAGNOSTICS statement.

This ESQL/COBOL demonstration program uses a SELECT statement to
declare a cursor. Then ESQL/COBOL opens, fetches, and closes that cursor. At
compile time, the program knows and contains all the information needed to
run the SELECT statement.

The DEMO1.ECO program reads a subset of the first and last names from the
customer table in the stores7 database. Two host variables, :FNAME and
:LNAME, hold the data from the customer table. The program declares a
cursor to manage the information retrieved from the table, and fetches the
rows one at a time. The output displays the first and last names of all the
customers in the stores7 database whose last names begin with a letter that
has a higher ASCII value than C.

For other examples illustrating dynamic SQL, refer to Chapter 6, “Dynamic
Management in INFORMIX-ESQL/COBOL.”
Programming with INFORMIX-ESQL/COBOL 1-45

The DEMO1.ECO Program
The DEMO1.ECO Program
7 *
8 *This program, DEMO1, performs a select on the
9 *customer table of the stores7 demonstration database.

10 *Select and display data (first and last names) by
11 *passing control to several subroutines.
12 *
13 IDENTIFICATION DIVISION.
14 PROGRAM-ID.
15 DEMO1.
16 *
17 ENVIRONMENT DIVISION.
18 CONFIGURATION SECTION.
19 SOURCE-COMPUTER. IFXSUN.
20 OBJECT-COMPUTER. IFXSUN.
21 *
22 DATA DIVISION.
23 WORKING-STORAGE SECTION.
24 *
25 *Declare variables.
26 *
27 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
28 77 FNAME PIC X(15).
29 77 LNAME PIC X(20).
30 77 EX-COUNT PIC S9(9) COMP-5.
31 77 COUNTER PIC S9(9) VALUE 1 COMP-5.
32 77 MESS-TEXT PIC X(254).
33 EXEC SQL END DECLARE SECTION END-EXEC.
34 01 WHERE-ERROR PIC X(72).
35 *
36 PROCEDURE DIVISION.
37 RESIDENT SECTION 1.
38 *
39 *Begin Main routine. Open a database, declare a cursor,
40 *open the cursor, fetch the cursor, and close the cursor.
41 *
42 MAIN.
43 DISPLAY ' '.
44 DISPLAY ' '.
45 DISPLAY 'DEMO1 SAMPLE ESQL PROGRAM RUNNING.'.
46 DISPLAY ' TEST SIMPLE DECLARE/OPEN/FETCH/LOOP'.
47 DISPLAY ' '.
48
49 PERFORM OPEN-DATABASE.
50
51 PERFORM DECLARE-CURSOR.
52 PERFORM OPEN-CURSOR.
53 PERFORM FETCH-CURSOR
1-46 INFORMIX-ESQL/COBOL Programmer’s Manual

The DEMO1.ECO Program
54 UNTIL SQLSTATE IS EQUAL TO "02000".
55 PERFORM CLOSE-CURSOR.
56 EXEC SQL DISCONNECT CURRENT END-EXEC.
57 DISPLAY 'PROGRAM OVER'.
58 STOP RUN.
59 *
60 *Subroutine to open a database.
61 *
62 OPEN-DATABASE.
63 EXEC SQL CONNECT TO 'stores7' END-EXEC.
64 IF SQLSTATE NOT EQUAL TO "00000"
65 MOVE 'EXCEPTION ON DATABASE STORES7' TO WHERE-ERROR
66 PERFORM ERROR-PROCESS.
67 *
68 *Subroutine to declare a cursor.
69 *
70 DECLARE-CURSOR.
71 EXEC SQL DECLARE DEMOCURSOR CURSOR FOR
72 SELECT FNAME, LNAME
73 INTO :FNAME, :LNAME
74 FROM CUSTOMER
75 WHERE LNAME > 'C'
76 END-EXEC.
77 IF SQLSTATE NOT EQUAL TO "00000"
78 MOVE 'ERROR ON DECLARE CURSOR' TO WHERE-ERROR
79 PERFORM ERROR-PROCESS.
80 *
81 *Subroutine to open a cursor.
82 *
83 OPEN-CURSOR.
84 EXEC SQL OPEN DEMOCURSOR END-EXEC.
85 IF SQLSTATE NOT EQUAL TO "00000"
86 MOVE 'ERROR ON OPEN CURSOR' TO WHERE-ERROR
87 PERFORM ERROR-PROCESS.
88 *
89 *Subroutine to fetch a cursor. Display data (names).
90 *
91 FETCH-CURSOR.
92 EXEC SQL FETCH DEMOCURSOR END-EXEC.
93 IF SQLSTATE NOT EQUAL TO "00000"
94 AND
95 SQLSTATE NOT EQUAL TO "02000"
96 MOVE 'ERROR DURING FETCH' TO WHERE-ERROR
97 PERFORM ERROR-PROCESS.
98
99 IF SQLSTATE IS EQUAL TO "00000"

100 DISPLAY FNAME, ' ', LNAME.
101 *
102 *Subroutine to close a cursor.
Programming with INFORMIX-ESQL/COBOL 1-47

Explanation of DEMO1.ECO
103 *
104 CLOSE-CURSOR.
105 EXEC SQL CLOSE DEMOCURSOR END-EXEC.
106 IF SQLSTATE NOT EQUAL TO "00000"
107 MOVE 'ERROR ON CLOSE-CURSOR' TO WHERE-ERROR
108 PERFORM ERROR-PROCESS.
109 *
110 *Subroutine to check for exceptions.
111 *
112 ERROR-PROCESS.
113 DISPLAY WHERE-ERROR.
114 DISPLAY 'THE SQLSTATE CODE IS: ', SQLSTATE.
115 DISPLAY '*********************************'.
116 EXEC SQL GET DIAGNOSTICS :EX-COUNT=NUMBER END-EXEC.
117 PERFORM EX-LOOP UNTIL COUNTER IS GREATER THAN EX-COUNT.
118 IF SQLCODE NOT EQUAL TO ZERO
119 STOP RUN.
120 *
121 *Subroutine to print exception messages.
122 *
123 EX-LOOP.
124 EXEC SQL
125 GET DIAGNOSTICS EXCEPTION :COUNTER
126 :MESS-TEXT=MESSAGE_TEXT
127 END-EXEC.
128 DISPLAY 'EXCEPTION ', COUNTER.
129 DISPLAY 'MESSAGE TEXT IS: ', MESS-TEXT.
130 DISPLAY '*****************************'.
131 ADD 1 TO COUNTER.
132 *

Explanation of DEMO1.ECO
The following paragraph-by-paragraph explanation of the DEMO1.ECO
source program uses representative COBOL sequence numbering to assist
you in locating the program line or concept under discussion.

In this sample program, all paragraph headers begin in Area A. All SQL state-
ments reside within Area B.

Refer to Chapter 4, “Error Handling.” of this manual and the Informix Guide
to SQL: Syntax for a description of the SQLSTATE value, and the GET
DIAGNOSTICS statement used in this program. The Informix Guide to SQL:
Syntax describes other SQL statements used in this program.
1-48 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO1.ECO
Lines 1 through 15

The COBOL IDENTIFICATION DIVISION identifies the program, and the
ENVIRONMENT DIVISION specifies the computer and any input/output
devices that the program uses. This code segment uses the standard COBOL
comment indicator, the asterisk (*), in position 7.

1 *
2 *This program, DEMO1, performs a select on the
3 *customer table of the stores7 demonstration database.
4 *Select and display data (first and last names) by
5 *passing control to several subroutines.
6 *
7 IDENTIFICATION DIVISION.
8 PROGRAM-ID.
9 DEMO1.

10 *
11 ENVIRONMENT DIVISION.
12 CONFIGURATION SECTION.
13 SOURCE-COMPUTER. IFXSUN.
14 OBJECT-COMPUTER. IFXSUN.
15 *

Lines 16 through 29

The DATA DIVISION describes the files, records, and fields that the COBOL
program uses.

Host variables represent independent data items. In this example, you
declare host variables in the WORKING-STORAGE SECTION as level number
77. (A host variable receives data fetched from a table and supplies data
written to a table.) The DEMO1.ECO program defines the FNAME and LNAME
host variables as alphanumeric in the PICTURE clauses within the EXEC SQL
BEGIN DECLARE SECTION END-EXEC and the EXEC SQL END DECLARE
SECTION END-EXEC. The MESS-TEXT host variable receives the contents of
the MESSAGE_TEXT field in the GET DIAGNOSTICS statement. The EX-COUNT
and COUNTER variables represent conditions that the exception-checking
subroutines use.
Programming with INFORMIX-ESQL/COBOL 1-49

Explanation of DEMO1.ECO
The alphanumeric nonhost COBOL variable WHERE-ERROR holds an error
message string.

16 DATA DIVISION.
17 WORKING-STORAGE SECTION.
18 *
19 *Declare variables.
20 *
21 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
22 77 FNAME PIC X(15).
23 77 LNAME PIC X(20).
24 77 EX-COUNT PIC S9(9) COMP-5.
25 77 COUNTER PIC S9(9) VALUE 1 COMP-5.
26 77 MESS-TEXT PIC X(254).
27 EXEC SQL END DECLARE SECTION END-EXEC.
28 01 WHERE-ERROR PIC X(72).
29 *

Lines 30 through 53

The PROCEDURE DIVISION contains the actual instructions that the database
server performs. It includes the following kinds of statements:

DISPLAY displays limited output to the screen.

MOVE moves data from one area of computer storage to another.

PERFORM branches off to specific paragraphs or subroutines.

PERFORM UNTIL conditionally transfers control to another subroutine.

STOP returns control to the operating system.

All the statements in this list reside in the MAIN paragraph, which controls
the execution sequence and number of repetitions for each paragraph or
subroutine performed.

The DISPLAY lines simply produce screen messages to assure you that the
sample program runs correctly and a simple DECLARE/OPEN/FETCH loop
executes. A screen message also informs you when the program ends.

The PERFORM statements execute in their listed order in the MAIN
paragraph, unless an error occurs. When an error occurs, the program calls
the ERROR-PROCESS procedure and program ends without continuing to the
next procedure.
1-50 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO1.ECO
Note that the program conditionally performs the FETCH-CURSOR
procedure. The loop continues until the SQLSTATE variable equals "02000" (In
other words, when the program cannot fetch more data). The program
automatically initializes the SQLSTATE variable each time an SQL statement
executes.

The program ends with the standard STOP RUN statement.

30 PROCEDURE DIVISION.
31 RESIDENT SECTION 1.
32 *
33 *Begin Main routine. Open a database, declare a cursor,
34 *open the cursor, fetch the cursor, and close the cursor.
35 *
36 MAIN.
37 DISPLAY ' '.
38 DISPLAY ' '.
39 DISPLAY 'DEMO1 SAMPLE ESQL PROGRAM RUNNING.'.
40 DISPLAY ' TEST SIMPLE DECLARE/OPEN/FETCH/LOOP'.
41 DISPLAY ' '.
42
43 PERFORM OPEN-DATABASE.
44
45 PERFORM DECLARE-CURSOR.
46 PERFORM OPEN-CURSOR.
47 PERFORM FETCH-CURSOR
48 UNTIL SQLSTATE IS EQUAL TO "02000".
49 PERFORM CLOSE-CURSOR.
50 EXEC SQL DISCONNECT CURRENT END-EXEC.
51 DISPLAY 'PROGRAM OVER'.
52 STOP RUN.
53 *

The following pages describe the various PERFORM statements listed in the
PROCEDURE division.

Lines 54 through 61

The OPEN-DATABASE subroutine opens the stores7 database using the
embedded SQL statement CONNECT. The words EXEC SQL and END-EXEC
contain the embedded SQL statement in the COBOL program.

A conditional IF statement returns the message EXCEPTION ON DATABASE
STORES7 to the WHERE-ERROR variable when SQLSTATE does not equal
"00000". Such an error can occur when the stores7 database has not been
created before being opened.
Programming with INFORMIX-ESQL/COBOL 1-51

Explanation of DEMO1.ECO
If an error occurs during the execution of the OPEN-DATABASE procedure,
the database server performs the ERROR-PROCESS procedure.

54 *Subroutine to open a database.
55 *
56 OPEN-DATABASE.
57 EXEC SQL CONNECT TO 'stores7' END-EXEC.
58 IF SQLSTATE NOT EQUAL TO "00000"
59 MOVE 'EXCEPTION ON DATABASE STORES7' TO WHERE-ERROR
60 PERFORM ERROR-PROCESS.
61 *

Lines 62 through 74

The DECLARE-CURSOR subroutine uses the embedded SQL statement
DECLARE to define the cursor DEMOCURSOR for the active set of rows
specified in the SELECT statement. The words EXEC SQL and END-EXEC
contain the embedded SQL statement in the COBOL program.

The SELECT statement specifies that the :FNAME and :LNAME host variables,
that were declared in the DATA DIVISION, to receive the data for the first and
last names of customers selected from the customer table. In addition, the
LNAME must begin with a letter that has a higher ASCII value than C.

An IF statement returns the message ERROR ON DECLARE CURSOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000".

If an error occurs during the execution of the DECLARE-CURSOR procedure,
the database server performs the ERROR-PROCESS procedure.

62 *Subroutine to declare a cursor.
63 *
64 DECLARE-CURSOR.
65 EXEC SQL DECLARE DEMOCURSOR CURSOR FOR
66 SELECT FNAME, LNAME
67 INTO :FNAME, :LNAME
68 FROM CUSTOMER
69 WHERE LNAME > 'C'
70 END-EXEC.
71 IF SQLSTATE NOT EQUAL TO "00000"
72 MOVE 'ERROR ON DECLARE CURSOR' TO WHERE-ERROR
73 PERFORM ERROR-PROCESS.
74 *
1-52 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO1.ECO
Lines 75 through 82

The OPEN-CURSOR subroutine activates the SELECT cursor DEMOCURSOR
using the embedded SQL statement OPEN.

An IF statement returns the message ERROR ON OPEN CURSOR to the WHERE-
ERROR variable when SQLSTATE does not equal "00000".

If an error occurs during the execution of the OPEN-CURSOR procedure, the
database server performs the ERROR-PROCESS procedure.

75 *Subroutine to open a cursor.
76 *
77 OPEN-CURSOR.
78 EXEC SQL OPEN DEMOCURSOR END-EXEC.
79 IF SQLSTATE NOT EQUAL TO "00000"
80 MOVE 'ERROR ON OPEN CURSOR' TO WHERE-ERROR
81 PERFORM ERROR-PROCESS.
82 *

Lines 83 through 95

The FETCH-CURSOR subroutine uses the embedded SQL statement FETCH to
move the cursor DEMOCURSOR to a new row in the active set and to retrieve
the row values into memory. DEMOCURSOR selects a row from the customer
table and puts the data from that row into the host variables :FNAME and
:LNAME.

As long as SQLSTATE equals "00000", the program has fetched the data
successfully, the FETCH-CURSOR procedure displays the LNAME and FNAME
host variables, and the procedure continues.

An IF statement sets the condition where a MOVE statement returns
the message ERROR DURING FETCH to the WHERE-ERROR variable when
SQLSTATE does not equal "00000" and when SQLSTATE does not equal "02000".
Programming with INFORMIX-ESQL/COBOL 1-53

Explanation of DEMO1.ECO
If an error occurs during the execution of the FETCH-CURSOR procedure, the
database server performs the ERROR-PROCESS procedure.

83 *Subroutine to fetch a cursor. Display data (names).
84 *
85 FETCH-CURSOR.
86 EXEC SQL FETCH DEMOCURSOR END-EXEC.
87 IF SQLSTATE NOT EQUAL TO "00000"
88 AND
89 SQLSTATE NOT EQUAL TO "02000"
90 MOVE 'ERROR DURING FETCH' TO WHERE-ERROR
91 PERFORM ERROR-PROCESS.
92
93 IF SQLSTATE IS EQUAL TO "00000"
94 DISPLAY FNAME, ' ', LNAME.
95 *

Lines 96 through 103

The CLOSE-CURSOR subroutine closes the cursor DEMOCURSOR using the
embedded SQL statement CLOSE. It disassociates the cursor from the SELECT
statement and stops the query process.

A MOVE statement returns the message ERROR ON CLOSE-CURSOR to the
WHERE-ERROR variable IF SQLSTATE does not equal "00000".

If an error occurs during the execution of the CLOSE-CURSOR procedure, the
database server performs the ERROR-PROCESS procedure.

96 *Subroutine to close a cursor.
97 *
98 CLOSE-CURSOR.
99 EXEC SQL CLOSE DEMOCURSOR END-EXEC.

100 IF SQLSTATE NOT EQUAL TO "00000"
101 MOVE 'ERROR ON CLOSE-CURSOR' TO WHERE-ERROR
102 PERFORM ERROR-PROCESS.
103 *

Lines 104 through 114

The ERROR-PROCESS subroutine contains the process that counts SQLSTATE
exceptions. That subroutine executes whenever an error occurs in one of the
other subroutines. The DEMO1.ECO program stops running whenever the
ERROR-PROCESS subroutine finds an SQLCODE value not equal to ZERO.
1-54 INFORMIX-ESQL/COBOL Programmer’s Manual

SQLSTATE displays the contents of WHERE-ERROR and indicates the result of
executing an SQL statement ("00000", "01000", "02000" or a value greater than
"02000"). The GET DIAGNOSTICS NUMBER field contains the count of excep-
tions associated with the SQLSTATE code. The PERFORM UNTIL statement
executes the EX-LOOP subroutine that displays an error message for each
exception. When the SQLCODE value does not equal ZERO (success), the
program terminates.

104 *Subroutine to check for exceptions.
105 *
106 ERROR-PROCESS.
107 DISPLAY WHERE-ERROR.
108 DISPLAY 'THE SQLSTATE CODE IS: ', SQLSTATE.
109 DISPLAY '*********************************'.
110 EXEC SQL GET DIAGNOSTICS :EX-COUNT=NUMBER END-EXEC.
111 PERFORM EX-LOOP UNTIL COUNTER IS GREATER THAN EX-COUNT.
112 IF SQLCODE NOT EQUAL TO ZERO
113 STOP RUN.
114 *

Lines 115 through 126

The EX-LOOP subroutine displays the exception number and the error
message for each SQLSTATE exception.

115 *Subroutine to print exception messages.
116 *
117 EX-LOOP.
118 EXEC SQL
119 GET DIAGNOSTICS EXCEPTION :COUNTER
120 :MESS-TEXT=MESSAGE_TEXT
121 END-EXEC.
122 DISPLAY 'EXCEPTION ', COUNTER.
123 DISPLAY 'MESSAGE TEXT IS: ', MESS-TEXT.
124 DISPLAY '*****************************'.
125 ADD 1 TO COUNTER.
126 *

Explanation of DEMO1.ECO
1-56 INFORMIX-ESQL/COBOL Programmer’s Manual

2
Chapter
INFORMIX-ESQL/COBOL Data
Types
Choosing Data Types for Host Variables 2-4
BINARY or COMP Data Using MF COBOL/2 2-6

Setting the Storage Mode with INFORMIXCOBSTORE. . . . 2-7

Data Conversion. 2-7
Converting CHARACTER Data 2-8
Converting SMALLINT Data 2-8
Converting INTEGER Data. 2-8
Converting FLOAT, SMALLFLOAT, and DECIMAL Data 2-9
Converting DATE Data 2-9
Data Discrepancies During Conversion 2-10

The CHAR Data Type 2-11

CHAR Type Routines 2-13
ECO-DSH. 2-14
ECO-USH . 2-17
ECO-GST . 2-20
ECO-SQC. 2-21

The VARCHAR Data Type 2-22
Data Comparison of VARCHAR Values 2-22
Programming with VARCHAR Host Variables 2-23

The TEXT and BYTE Data Types 2-25
Working with Blobs 2-25
Using Blobs with Dynamic SQL 2-27

Using DESCRIBE 2-28
Using SET DESCRIPTOR 2-28
Using GET DESCRIPTOR 2-29

2-2 INFO
Numeric-Formatting Routines 2-31
Formatting Numeric Strings 2-33
ECO-FFL . 2-41
ECO-FIN . 2-43
RMIX-ESQL/COBOL Programmer’s Manual

This chapter includes information on the SQL and COBOL data types
that you can use to manipulate values in your INFORMIX-ESQL/COBOL
programs. It covers the following topics:

■ The correspondence between the various SQL and COBOL data types.

■ How ESQL/COBOL converts data.

■ How to use the CHAR (character string) data type and the character
string manipulation routines included with the ESQL/COBOL library
extension.

■ How to use the VARCHAR (variable-length character string) data
type in ESQL/COBOL programs.

■ How to use TEXT and BYTE data types (blobs) in ESQL/COBOL
programs.

■ How to format numeric strings and use the numeric-formatting run-
time routines included with the ESQL/COBOL library extension.

Refer to the Informix Guide to SQL: Reference for a detailed description of the
SQL data types available in a database. In addition, this chapter and
Chapter 3, “Working with Time Data Types,” describe the syntax and use for
all valid ESQL/COBOL data types.

Important: The NCHAR and NVARCHAR NLS data types match the CHAR and
VARCHAR data types, respectively. Information in this chapter regarding the CHAR
and VARCHAR data types also applies to the NCHAR and NVARCHAR data types,
respectively. For more information on NLS, see the “Informix Guide to SQL:
Reference.”
INFORMIX-ESQL/COBOL Data Types 2-3

Choosing Data Types for Host Variables
Choosing Data Types for Host Variables
ESQL/COBOL associates host variables with SQL data types because host
variables appear in SQL statements. You must declare a host variable of the
appropriate COBOL data type for each column of a table in a database.

Figure 2-1 shows the correspondence between SQL data types and their
declaration in ESQL/COBOL.

Figure 2-1
Correspondence Between SQL and COBOL Data Types

SQL Data Type COBOL Declaration Notes

BYTE PIC X(n) Use the FILE(n) data type to hold
the name of the file where you
load or store a BYTE column

CHAR(n) PIC X(10)

DATE PIC S9(9) USAGE COMP Stores Julian values. Use
DATE_TYPE (with the COBOL
Declaration PIC X(10)), to hold
date values in the format
mm/dd/yyyy

DECIMAL(p,n) PIC S9(m)V9(n) USAGE
COMP-3

m = p-n

INT PIC S9(9) USAGE COMP

MONEY(p,n) PIC S9(m)V9(n) USAGE
COMP-3

m = p-n

NCHAR(n) PIC X(10)

NVARCHAR(n) PIC X(n)

 (1 of 2)
2-4 INFORMIX-ESQL/COBOL Programmer’s Manual

Choosing Data Types for Host Variables
You must declare ESQL/COBOL host variables in the EXEC SQL BEGIN
DECLARE SECTION END-EXEC portion of a program. These host variables can
use PICTURE clauses containing the following characters:

■ X, S, 9, and V

■ The repetition expression (n)

PICTURE clauses for ESQL/COBOL host variables do not allow you to use the
following characters:

■ A and P

■ Editing characters such as Z, /, +, -, . , and ,

You can use any USAGE clause when you define a host variable. (Refer to
“Using Host Variables in SQL Statements” on page 1-21 for information on
declaring host variables.)

The ESQL/COBOL preprocessor generates the correct COBOL data type in the
.cob file. This ensures that ESQL/COBOL allocates consistently the correct
amount of memory for the host variables. (Refer to “Compiling INFORMIX-
ESQL/COBOL Programs” on page 1-32.)

SMALLINT PIC S9(4) USAGE COMP

TEXT PIC X(n) Use the FILE(n) data type to hold
the name of the file where you
load or store a TEXT column

VARCHAR(n) PIC X(n)

* For MF COBOL/2, substitute COMP-5 for COMP; for RM/COBOL-85, substitute
COMP-1 for COMP.

SQL Data Type COBOL Declaration Notes

 (2 of 2)
INFORMIX-ESQL/COBOL Data Types 2-5

BINARY or COMP Data Using MF COBOL/2
BINARY or COMP Data Using MF COBOL/2
INFORMIX-ESQL/COBOL supports only those data types valid for the
particular implementation of COBOL. The ESQL/COBOL preprocessor reports
as illegal any variables defined with a data type that COBOL does not
recognize.

INFORMIX-ESQL/COBOL using MF COBOL/2 can report additional errors for
BINARY and COMPUTATIONAL (COMP) data types because of limits on the
storage sizes of these data types.

The size (maximum number of digits) specified in the PICTURE clause
provides the basis for the number of bytes needed to store BINARY or
COMPUTATIONAL data. When determining the number of bytes needed to
store BINARY and COMPUTATIONAL data, MF COBOL/2 compilers allocate
storage based on whether you specify byte storage or word storage.

Figure 2-2 shows the storage allocation for MF COBOL/2 compilers.

Figure 2-2
Storage Allocation for MF COBOL/2 Compilers

Number of Digits in PICTURE Variable Size (in bytes)

Signed Unsigned Byte Storage Word Storage

1-2 1-2 1 2

3-4 3-4 2 2

5-6 5-7 3 4

7-9 8-9 4 4

10-11 10-12 5 8

12-14 13-14 6 8

15-16 15-16 7 8

17-18 17-18 8 8
2-6 INFORMIX-ESQL/COBOL Programmer’s Manual

Data Conversion
The COBOL numeric data types must match internal data types to properly
interface to the INFORMIX-ESQL/COBOL libraries. To make sure that host
variables types match each other, the ESQL/COBOL preprocessor reports an
error when the resulting variable size does not equal 2 or 4 bytes.

In addition, INFORMIX-ESQL/COBOL limits byte and word storage to the
following specific PICTURE clause sizes:

■ When you use byte storage, only 3, 4, 7, 8, and 9 represent legal PIC
sizes.

■ When you use word storage, PIC sizes can range from 1 to 9,
inclusive.

Setting the Storage Mode with INFORMIXCOBSTORE

You can use the environment variable INFORMIXCOBSTORE to indicate to
INFORMIX-ESQL/COBOL the type of storage mode to use during compilation
in the MF COBOL/2 environment. You can use only word and byte as legal
values for INFORMIXCOBSTORE. When you leave INFORMIXCOBSTORE
undefined, then storage mode defaults to byte. The Informix Guide to SQL:
Reference discusses INFORMIXCOBSTORE and other environment variables
in greater detail.

Data Conversion
The relationship of the SQL data types to the PICTURE clause used in the
declaration of COBOL host variables determines the conversion of data stored
in an SQL database and COBOL host variables.

If you enter data into an SQL database exclusively through an ESQL/COBOL
program or from a collection of data that another COBOL program generates,
you can choose both SQL and COBOL data types so that data conversion in
both directions can proceed without loss of accuracy and without
unacceptable rounding or truncation of data.

Warning: Exercise caution when you incorporate data that another program
prepares.You can encounter data conversion problems when the other program uses
data types that do not correspond to INFORMIX-ESQL/COBOL data types.
INFORMIX-ESQL/COBOL Data Types 2-7

Converting CHARACTER Data
Converting CHARACTER Data
The SQL data type CHAR(n) corresponds exactly to the COBOL PICTURE X(n),
and vice versa.

For CHARACTER data (and some INTEGER type data) you can assign SQL and
COBOL data types in a way that guarantees that data passes in both directions
without any loss of accuracy or other conversion failures.

Important: When you use NLS, the NCHAR and NVARCHAR NLS data types
correspond to the CHAR and VARCHAR data types, respectively. The preceding NLS
data types allow you to use CHAR and VARCHAR data in an NLS environment
without causing data conversion problems. For more information on NLS, see the
“Informix Guide to SQL: Reference.”

Converting SMALLINT Data
You can insert a COBOL PICTURE S9(4) value into an SQL SMALLINT column.
However, a problem can occur when you convert in the other direction
because the largest SMALLINT equals 32,767. For example, a conversion
failure occurs when you try to pass the number 30,000 from an SQL
SMALLINT column to a COBOL variable with PICTURE S9(4).

Converting INTEGER Data
You can insert a COBOL PICTURE S9(9) into an SQL INTEGER column.
However, a problem can occur when you convert in the other direction with
INTEGER and PICTURE S(9) because the largest INTEGER equals 2,147,483,647.

If your INTEGER data probably exists within INTEGER data limits, make sure
you provide adequate storage size in both directions. To provide storage size,
choose a data type with a larger range.

If you think integers that exceed the size of the largest INTEGER can occur in
your program, use the DECIMAL(s) data type where s = 10.
2-8 INFORMIX-ESQL/COBOL Programmer’s Manual

Converting FLOAT, SMALLFLOAT, and DECIMAL Data
Converting FLOAT, SMALLFLOAT, and DECIMAL Data
The conversion of data with fractional parts is more complex than the
conversion of character and integer data. COBOL numeric data spans from
the decimal numbers 10-18 [PIC SV9(18)] to 10+18 [PIC S9(18)], whereas
FLOAT, SMALLFLOAT, and DECIMAL exceed that range. When you create all
the data using COBOL, the preceding conversion succeeds.

COBOL automatically stores values in base 10, and stores SMALLFLOAT and
FLOAT in base 2. Inevitable rounding occurs with conversion in either
direction. Informix, therefore, recommends that you use DECIMAL types for
database columns when possible.

When you convert FLOAT, SMALLFLOAT, or DECIMAL from COBOL to SQL,
enter the data type PIC S9(m)V9(n) into a database column of one of these
types:

■ DECIMAL(p,s), where p = m+n

■ FLOAT, where m+n = 14

■ SMALLFLOAT, where m+n = 7

When you convert FLOAT, SMALLFLOAT, or DECIMAL from SQL to COBOL,
use PIC S9(m)V9(n), where m represents the exponent to base 10 of the largest
likely absolute value and -n represents the exponent to base 10 of the smallest
likely value. To preserve precision, make n as large as possible, consistent
with your storage capacity.

Converting DATE Data
ESQL/COBOL stores the DATE data type internally as a 4-byte integer. You can
define a corresponding host variable in one of the following ways:

■ If you use that variable strictly within SQL statements, you can define
the corresponding host variable as the 4-byte integer [PIC S9(9)].

■ You can use the special DATE_TYPE clause [PIC X(10)] to put the host
variable in a user-readable mm/dd/yyyy form. (Refer to “DATE Type
Routines” on page 3-3.)
INFORMIX-ESQL/COBOL Data Types 2-9

Data Discrepancies During Conversion
Data Discrepancies During Conversion
When a discrepancy exists between the data type of a database value and the
data type of the host variable, or between the data types of two columns,
ESQL/COBOL tries to convert one into the other. For example, ESQL/COBOL
converts a CHAR data type into a number data type when the CHAR variable
represents a number.

When comparing a CHAR value and a number value, ESQL/COBOL converts
the CHAR value to a number value. To convert a number data type to a CHAR
data type, ESQL/COBOL creates a string.

If ESQL/COBOL cannot make a conversion, because of an unmeaningful
conversion or because the converted value exceeds the size of the receiving
variable, ESQL/COBOL returns values as described in Figure 2-3. In that
figure, Num represents a number data type, and Char represents a character
data type.

Figure 2-3
Conversion Discrepancies and Results for Number and Character Types

Important: The CHAR data type information also applies to the NCHAR NLS data
type. For more information on NLS, see the “Informix Guide to SQL: Reference.”

Conversion Discrepancy Result

Char to Char Does not fit ESQL/COBOL truncates the string, and sets the
indicator variable to the length of the SQL
column. (Note that even the truncation of trailing
blanks triggers these results.)

Num to Char Does not fit ESQL/COBOL fills the string with asterisks, and
sets the indicator variable to a positive integer.

Char to Num Not a number Undefined number. ESQL/COBOL makes
SQLCODE OF SQLCA negative and sets the
indicator variable to nonzero.

Char to Num Overflow Undefined number. ESQL/COBOL makes
SQLCODE OF SQLCA negative.

Num to Num Overflow Undefined number. ESQL/COBOL makes
SQLCODE OF SQLCA negative.
2-10 INFORMIX-ESQL/COBOL Programmer’s Manual

The CHAR Data Type
In Figure 2-3, the phrase does not fit means that the sending variable exceeds
the size of the receiving character variable or column. When the fractional
part of a number does not fit in a character variable, ESQL/COBOL rounds
that number. Asterisks (*) appear only when the integer part does not fit.

The term overflow describes a situation where the sending number (or
character representation of a number) exceeds in absolute magnitude the
largest value that the data type of the receiving variable permits.

Another conversion problem not listed in Figure 2-3 occurs when the
smallest COBOL number exceeds the size of an SQL number, that is called
underflow. For example, this problem occurs when you place a positive
number less than 10-5 into a COBOL variable with the data type PIC SV9(5). In
the case of underflow, ESQL/COBOL stores the value zero and sets no error or
warning flags.

When conversion problems occur, ESQL/COBOL provides warning and error
trapping. In each case listed in Figure 2-3, ESQL/COBOL sets SQLWARN1 OF
SQLWARN OF SQLCA to W. When a right truncation occurs on a data string,
ESQL/COBOL sets the SQLSTATE value to a warning value of 01004.
Chapter 4, “Error Handling,” describes the SQLCA record. Refer also to
“Indicator Variables and Null Values” on page 1-27 for a discussion of how
you can use indicator variables to detect conversion errors.

The CHAR Data Type
The CHAR data type (also known as CHARACTER) stores any string of
printable letters, numbers, and symbols. ESQL/COBOL stores a CHAR value in
its row in the tblspace. When ESQL/COBOL stores a CHAR value,
ESQL/COBOL uses spaces to pad that value to the size of its column.

The NCHAR data type (short for national character) also stores any string of
printable letters, numbers, and symbols when NLS has been enabled.
ESQL/COBOL treats NCHAR the same as a CHAR except that the current
release does not support comparisons between NCHAR and CHAR values.

For more information on NLS and the CHAR and NCHAR data types, refer to
the Informix Guide to SQL: Reference.
INFORMIX-ESQL/COBOL Data Types 2-11

The CHAR Data Type
Figure 2-4 shows the corresponding COBOL data type and COBOL
description for the arguments used in the CHAR manipulation routines
discussed in this chapter.

Figure 2-4
COBOL Types and Descriptions for CHAR Manipulation Routines

ESQL/COBOL implements the PIC S9(?) shown in the COBOL Description
column as PIC S9(9) for a 4-byte INTEGER or PIC S9(4) for a 2-byte INTEGER.

Figure 2-4 also lists the word COMP located in the COBOL Description
column. To interpret the word COMP, refer to Figure 2-5 for a listing of COMP
equivalents for the types of COBOL compilers that ESQL/COBOL supports.

Figure 2-5
COMP Equivalents for Supported COBOL Compilers

Argument COBOL Type COBOL Description

 S CHARACTER PIC X(LENGTH)

S-LEN INTEGER PIC S9(?) COMP

COMP Equivalent Type of COBOL

COMP-5 MF COBOL/2

COMP-1 RM/COBOL-85
2-12 INFORMIX-ESQL/COBOL Programmer’s Manual

CHAR Type Routines
CHAR Type Routines
Figure 2-6 shows two CHAR string-manipulation routines and two related
error-checking routines included in the libraries distributed with
INFORMIX-ESQL/COBOL.

Figure 2-6
Descriptions of CHAR Type Routines

Use the ECO-DSH and ECO-USH routines in your COBOL programs to
manipulate CHAR data types. When you use the esqlcobol compiler shell
script, ESQL/COBOL links the run-time routines automatically.

Some routines (for example, ECO-DSH and ECO-USH in this chapter, and
ECO-DAT in Chapter 3, “Working with Time Data Types”) lack a status
parameter. Use the ECO-GST and ECO-SQC routines to check for errors
returned those types of routines.

The following four sections provide detailed descriptions of the routines
listed in Figure 2-6.

Routine Name What It does

ECO-DSH Converts a character string to lowercase

ECO-USH Converts a character string to uppercase

ECO-GST Checks ECO-DSH, ECO-USH, and ECO-DAT for errors

ECO-SQC Checks ECO-DSH, ECO-USH, and ECO-DAT for errors
INFORMIX-ESQL/COBOL Data Types 2-13

ECO-DSH
ECO-DSH

Purpose
Use ECO-DSH to downshift, that is, convert all the characters within a
character string to lowercase characters.

Syntax
CALL ECO-DSH USING S, S-LEN.

S the character string that you provide

S-LEN the length that you specify for S

Usage
ECO-DSH lacks a STATUS parameter. Instead, this routine sets the internal
variable SQLCODE OF SQLCA. To check the SQLCA variable, call the ECO-GST
or ECO-SQC routine. Refer to pages 2-20 and 2-21, respectively, for descrip-
tions of those routines.

After you call the ECO-DSH routine, you can test SQLCODE with the ECO-GST
or ECO-SQC routines to check SQLCODE for an error code (zero means no
error). Refer to Chapter 4, “Error Handling,” for a discussion of error
handling and the SQLCA record.

The ECO-DSH routine can handle multibyte characters in its strings. In
addition, this routine supports locale-specific definitions of uppercase and
lowercase characters. For more information, see Chapter 6 of the Guide to GLS
Functionality. ♦

GLS
2-14 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DSH
Example
The following code fragment shows how to use ECO-DSH to convert an
uppercase string to a lowercase string. Note that the data type of TEXTLEN1
depends on the type of compiler used. The ECO-DSH routine converts the
uppercase string contained in the variable TEXT1 to a lowercase string. Then,
the ECO-GST routine checks for any errors.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODSH.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
12 77 TEXT1 PIC X(17) VALUE "123ABCDEFGHIJK".
13 77 TEXTLEN1 PIC S9(9) USAGE COMP-5 VALUE 17.
14 EXEC SQL END DECLARE SECTION END-EXEC.
15 *
16 PROCEDURE DIVISION.
17 RESIDENT SECTION 1.
18 *
19 *Begin Main routine. Display the original string.
20 *Convert the string to lowercase using the ECO-DSH
21 *routine. Display the converted string.
22 *
23 MAIN.
24 DISPLAY 'TEXT BEFORE DOWNSHIFT IS: ', TEXT1.
25 CALL ECO-DSH USING TEXT1, TEXTLEN1.
26 DISPLAY 'TEXT AFTER DOWNSHIFT IS: ', TEXT1.
27 CALL ECO-GST USING SQLCA.
28 DISPLAY 'SQLCODE VALUE IS: ', SQLCODE.
29 STOP RUN.
30 *
INFORMIX-ESQL/COBOL Data Types 2-15

ECO-DSH
Example Output
The output for the preceding code fragment displays the original character
string, the converted character string in lowercase letters, and the SQLCODE
value.

TEXT BEFORE DOWNSHIFT IS: 123ABCDEFGHIJK
TEXT AFTER DOWNSHIFT IS: 123abcdefghijk
SQLCODE VALUE IS: +0000000000
2-16 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-USH
ECO-USH

Purpose
Use ECO-USH to upshift, that is, to convert all the characters within a character
string to uppercase characters.

Syntax
CALL ECO-USH USING S, S-LEN.

S the character string that you provide

S-LEN the length that you specify for S

Usage
ECO-USH lacks a STATUS parameter. Instead, ECO-USH sets the internal
variable SQLCODE OF SQLCA. To check the SQLCA variable, call the ECO-GST
or ECO-SQC routine. Refer to pages 2-20 and 2-21, respectively, for
descriptions of those routines.

After you call the ECO-DAT routine, you can test SQLCODE with the
ECO-GST or ECO-SQC routine to check SQLCODE for an error code (zero
indicates no error). Refer to Chapter 4, “Error Handling,” for a discussion of
error handling and the SQLCA record.

The ECO-USH routine can handle multibyte characters in its strings. In
addition, this routine supports locale-specific definitions of uppercase and
lowercase characters. For more information, see Chapter 6 of the Guide to GLS
Functionality. ♦

GLS
INFORMIX-ESQL/COBOL Data Types 2-17

ECO-USH
Example
The following code fragment shows how to use ECO-USH to convert a
lowercase string to an uppercase string. Note that the data type of TEXTLEN1
depends on the type of compiler used.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOUSH.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 *Declare variables.
12 *
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 TEXT1 PIC X(17) VALUE "123abcdefghijk".
15 77 TEXTLEN1 PIC S9(9) USAGE COMP-5 VALUE 17.
16 EXEC SQL END DECLARE SECTION END-EXEC.
17 *
18 PROCEDURE DIVISION.
19 RESIDENT SECTION 1.
20 *
21 *Begin Main routine. Display the string. Call the
22 *ECO-USH routine to convert the string to
23 *uppercase characters. Display the converted
24 *string.
25 *
26 MAIN.
27 DISPLAY 'Text before upshift is: ', TEXT1.
28 CALL ECO-USH USING TEXT1, TEXTLEN1.
29 DISPLAY 'Text after upshift is: ', TEXT1.
30 CALL ECO-GST USING SQLCA.
31 DISPLAY 'SQLCODE value is: ', SQLCODE.
32 STOP RUN.
33 *
2-18 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-USH
Example Output
The output for the preceding code fragment displays the original character
string, the converted character string in uppercase letters, and the SQLCODE
value.

TEXT BEFORE UPSHIFT IS: 123abcdefghijk
TEXT AFTER UPSHIFT IS: 123ABCDEFGHIJK
SQLCODE VALUE IS: +0000000000
INFORMIX-ESQL/COBOL Data Types 2-19

ECO-GST
ECO-GST

Purpose
The ECO-DAT, ECO-DSH, and ECO-USH ESQL/COBOL routines all lack a
STATUS parameter. Use ECO-GST to check the SQLCODE OF SQLCA when you
call those routines.

Syntax
CALL ECO-GST USING SQLCA.

SQLCA the SQLCA record

Usage
SQLCA represents the SQLCA record defined in the INCLUDE SQLCA
statement. Refer to the discussion of INCLUDE statements on page 1-30 for
more information. Chapter 4, “Error Handling,” discusses the structure and
use of the SQLCA record in ESQL/COBOL.

Tip: ECO-SQC exceeds the functionality of ECO-GST.
2-20 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQC
ECO-SQC

Purpose
The ECO-DAT, ECO-DSH, and ECO-USH ESQL/COBOL routines all lack a
STATUS parameter. Use ECO-SQC to check the SQLCODE OF SQLCA and the
SQLWARN OF SQLCA codes when you call those routines.

Syntax
CALL ECO-SQC USING SQLCA, SQLCODETMP, SQLWARNTMP.

SQLCA the SQLCA record

SQLCODETMP the SQL result code, SQLCODE OF SQLCA (INTEGER)

SQLWARNTMP the SQL warning code, SQLWARN0 OF SQLWARN OF
SQLCA (INTEGER)

Usage
The SQLCA parameter represents the SQLCA record defined in the INCLUDE
SQLCA statement. The preprocessor includes that record automatically in the
COBOL generated file. Refer to the discussion of INCLUDE statements on page
1-30 for more information.

The SQLCODETMP and SQLWARNTMP parameters represent temporary
variables that the preprocessor generates. ESQL/COBOL does not require you
to declare those variables.

The SQLCODE OF SQLCA indicates the result of executing an SQL statement,
and SQLWARN OF SQLCA signals various warning conditions. Chapter 4,
“Error Handling,” discusses the structure and use of the SQLCA record in
ESQL/COBOL.

ECO-SQC exceeds the functionality of ECO-GST.
INFORMIX-ESQL/COBOL Data Types 2-21

The VARCHAR Data Type
The VARCHAR Data Type
The term VARCHAR means variable character. You can use a VARCHAR to
define the data type of a column in ESQL/COBOL programs only when you
use an INFORMIX-OnLine Dynamic Server.

The VARCHAR data type stores a character string of varying length that can
range in size from 1 byte to 255 bytes. In ESQL/COBOL, you use VARCHAR
values much like CHAR values. You can create, fetch, compare, index,
subscript, and display a VARCHAR value just like a CHAR value. Like a CHAR
value, ESQL/COBOL stores the VARCHAR value in its row in the tblspace.

The term NVARCHAR means native variable character. You can use an
NVARCHAR to define the data type of a column in INFORMIX-ESQL/COBOL
programs only when you use an INFORMIX-OnLine Dynamic Server and you
enable NLS. NVARCHAR allows for foreign characters. You treat NVARCHAR
the same as VARCHAR.

For more information on the VARCHAR and NVARCHAR data types, refer to
the Informix Guide to SQL: Reference. For more information on NLS, see the
Informix 7.1 documentation.

Important: In ESQL/COBOL Version 7.2, no run-time routines or macros, designed
specifically to manipulate VARCHAR data types, exist.

Data Comparison of VARCHAR Values
ESQL/COBOL compares VARCHAR values to other VARCHAR values and to
CHARACTER values in the same way that ESQL/COBOL compares
CHARACTER values. This means that ESQL/COBOL pads the shorter value on
the right with spaces until the value lengths match. Then, ESQL/COBOL
compares those values for the full length. The same holds true for
NVARCHAR values when you enable NLS, except that ESQL/COBOL Version
7.2 does not support comparisons between NVARCHAR and VARCHAR
values. For more information on NLS, see the Informix 7.1 documentation.

Figure 2-7 lists some examples (the plus sign [+] represents a space) of
VARCHAR and NVARCHAR values:
2-22 INFORMIX-ESQL/COBOL Programmer’s Manual

Programming with VARCHAR Host Variables
Figure 2-7
Examples of VARCHAR and NVARCHAR Values

Programming with VARCHAR Host Variables
ESQL/COBOL strips the trailing spaces in VARCHAR host variables (and
NVARCHAR host variables when you enable NLS) when you store the value
in the database. When you retrieve a value from a VARCHAR column in the
database, ESQL/COBOL pads that value with spaces to the declared length of
the VARCHAR host variable. For more information on NLS, see the Informix
Guide to SQL: Reference.

Figure 2-8 shows two examples of the contents of a VARCHAR host variable
and their associated values as stored in the database (a plus sign [+] repre-
sents a space).

Figure 2-8
Examples of VARCHAR Host Variable Contents and Values

Type Length Data Type Length Data Result

VARCHAR 2 CA VARCHAR 2 CA equal

VARCHAR 3 AB+ VARCHAR 2 AB equal

VARCHAR 4 abcd CHARACTER 5 abcd+ equal

VARCHAR 3 OH+ CHARACTER 2 OH equal

NVARCHAR 2 CA NVARCHAR 2 CA equal

NVARCHAR 3 AB+ NVARCHAR 2 AB equal

Host Variable Database Column

Type Data Type Data

VARCHAR Cincinnati+ VARCHAR Cincinnati

VARCHAR Cincinnati VARCHAR Cincinnati
INFORMIX-ESQL/COBOL Data Types 2-23

Programming with VARCHAR Host Variables
Figure 2-9 shows what happens when you select a VARCHAR value from the
database into a VARCHAR host variable (a plus sign [+] represents a space).

Figure 2-9
Example of Result Caused When You Select a

VARCHAR Value from Database into VARCHAR Host Variable

Use the following syntax to declare a host variable for a VARCHAR in an
ESQL/COBOL program:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

*... (other SQL declarations)

 77 VC VARCHAR(n).

*... (other SQL declarations)

 EXEC SQL END DECLARE SECTION END-EXEC.

Replace VC with the name of the host variable. Replace n with the max-size of
the VARCHAR as you specified in your CREATE TABLE statement.

Then, ESQL/COBOL generates the following COBOL code:

 77 VC PIC X(n).

For example, in the procedure division of your program, imagine that you
specified the following column definition:

EXEC SQL CREATE TABLE EMPLOYEE (
LNAME CHAR(20),
FNAME CHAR(20),
START_DATE DATE,
HISTORY VARCHAR(200, 50))

END-EXEC.

Database Column Host Variable

Type Data Type Length Data

VARCHAR Cincinnati VARCHAR 15 Cincinnati+++++
2-24 INFORMIX-ESQL/COBOL Programmer’s Manual

The TEXT and BYTE Data Types
This column definition requires that you declare a host variable in the data
division, as shown in the following code fragment:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 77 H-HISTORY VARCHAR(200).

 EXEC SQL END DECLARE SECTION END-EXEC.

The TEXT and BYTE Data Types
This section describes how to work with blobs (binary large objects) in
ESQL/COBOL. A blob represents a data object that theoretically has no
maximum size. In addition, you must specify the data type of a blob as TEXT
or BYTE.

The TEXT data type stores any kind of text data. The BYTE data type stores
any kind of binary data in an undifferentiated byte stream. You can use the
TEXT and BYTE data types in ESQL/COBOL to define the data type of a
column in database applications only when you use INFORMIX-OnLine
Dynamic Server.

For more information on the TEXT and BYTE data types, refer to the Informix
Guide to SQL: Reference. Refer also to the INFORMIX-OnLine Dynamic Server
Administrator’s Guide for information on locks and how ESQL/COBOL stores
blobs.

Important: Informix does not include any Informix run-time routines, that manip-
ulate only TEXT or BYTE data types, with INFORMIX-ESQL/COBOL Version 7.2.

Working with Blobs
You can insert data into TEXT and BYTE columns from a FILE host data type
in ESQL/COBOL. You cannot use a quoted text string, number, or any other
actual value to insert or update blob columns.
INFORMIX-ESQL/COBOL Data Types 2-25

Working with Blobs
In ESQL/COBOL, you can access blobs through a special type called FILE.
With standard SQL statements, you can select data as shown in the following
example:

SELECT XBLOB INTO :FILEVAR FROM TAB

To use the TEXT and BYTE data types with ESQL/COBOL simply specify a file
used to store the blob. You need to declare only the name of the host variable
to use the blob data type.

The following code fragment shows how to declare a host variable for a
column that uses the TEXT or BYTE data type in ESQL/COBOL:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

* . . . (other SQL declarations)

 77 BLOB-VAR FILE(n) VALUE 'filename'.

* . . . (other SQL declarations)

 EXEC SQL END DECLARE SECTION END-EXEC.

Replace BLOB-VAR with the name of the host variable, n with the number of
letters in the name of the file, and filename with the name that you specify for
the file.

The following example shows the COBOL code that ESQL/COBOL generates:

 77 BLOB-VAR PIC X(n) VALUE 'filename'.

For example, in the procedure division of your program, imagine that you
specify the following TEXT column definition:

 EXEC SQL CREATE TABLE EMPLOYEE (
LNAME CHAR(20),
FNAME CHAR(20),
START_DATE DATE,
HISTORY VARCHAR(200, 50),
RESUME TEXT)

 END-EXEC.

This column definition requires you to declare a host variable in the data
division as shown in the following code fragment:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 77 H-RESUME FILE(8) VALUE 'res-file'.

 EXEC SQL END DECLARE SECTION END-EXEC.
2-26 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Blobs with Dynamic SQL
Using Blobs with Dynamic SQL
You can use binary large objects (blobs) with SQL descriptors in X/Open
dynamic SQL. To access blobs correctly in ESQL/COBOL, you must perform
the following steps before you execute a DESCRIBE statement:

1. Initialize the TYPE field of the system-descriptor area to 116.

2. Initialize the LENGTH field of the system-descriptor area to the
length of the FILE variable.

3. Initialize the DATA field of the system-descriptor area using the FILE
variable.

Warning: You cannot rely on the DESCRIBE statement to set up the returned values
correctly.

The following example shows how to use an SQL descriptor to retrieve a
BYTE data column into a file named blob_output. The example assumes that
you name the table tab and you name the blob field col.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 77 FILENAME FILE(12) VALUE 'blob_output'.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL SET DESCRIPTOR 'desc' VALUE 1, TYPE = 116,

 DATA = :FILENAME, LENGTH = 12
 END-EXEC.
 ...
 EXEC SQL DECLARE x CURSOR FOR SELECT COL FROM TAB END-EXEC.
 ...
 EXEC SQL FETCH x USING SQL DESCRIPTOR 'desc' END-EXEC.
 ...

With dynamic SQL, you can manipulate the system descriptors to access blob
data. The examples shown in “Using SET DESCRIPTOR” on page 2-28 and
“Using GET DESCRIPTOR” on page 2-29 show how to use the FILE variable
with X/Open dynamic SQL statements.
INFORMIX-ESQL/COBOL Data Types 2-27

Using Blobs with Dynamic SQL
Using DESCRIBE

After describing an ESQL/COBOL statement that involves a blob column, you
set the system-descriptor area entry fields for the column to the values shown
in Figure 2-10.

Figure 2-10
Example of System-Descriptor Area Entries for Blob Column

Make sure you leave the contents of all other fields undefined.

Using SET DESCRIPTOR

Before you can use the blob data, you must initialize that data with a variable
of type FILE. You can choose a shorter length, but you must change the TYPE
field of the system descriptor area to a value of 116. For example, the
following statement specifies that a file named outputfile can access the blob:

MOVE 'outputfile' TO FILEVAR.
SET DESCRIPTOR 'desc' VALUE 3 DATA = :FILEVAR, LENGTH = 20,

TYPE = 116.

Value Description

TYPE SQLTEXT or SQLBYTE

LENGTH 56 (length of an internal blob structure)

NAME name of the column

NULLABLE set when column allows nulls
2-28 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Blobs with Dynamic SQL
Using GET DESCRIPTOR

You can use the following GET DESCRIPTOR statement on a blob sqlvar to
find out the name of the FILE that you already set:

GET DESCRIPTOR 'desc' VALUE 3 :FILEVAR2 = DATA

If you specified outputfile as the file you set, FILEVAR2 contains the name
outputfile, provided that the variable equals or exceeds the size of the file
name.

Assuming that you set the descriptor properly, the following FETCH
statement puts the contents of the blob data in the specified file outputfile:

FETCH AC USING SQL DESCRIPTOR 'desc'

The following example program, COBLOB, works with TEXT data. COBLOB
creates a test database, creates a database table that contains a blob column,
and stores the text of the source code in that table. You can verify that this
program works using DIFF to compare the contents of coblob.eco and
rettext01. This example works only with MF COBOL/2.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 COBLOB.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 INPUT-OUTPUT SECTION.
12 FILE-CONTROL.
13 DATA DIVISION.
14 FILE SECTION.
15 *
16 *Declare variables.
17 *
18 WORKING-STORAGE SECTION.
19 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
20 01 HTEXT1 FILE(13).
21 01 TRET1 FILE(9).
22 EXEC SQL END DECLARE SECTION END-EXEC.
23 PROCEDURE DIVISION.
24 *
INFORMIX-ESQL/COBOL Data Types 2-29

Using Blobs with Dynamic SQL
25 *Begin Main routine. Create a database. Create a
26 *table with a column. Move the source code of this
27 *program into a file host variable. Insert the
28 *file host variable into the table column. Move
29 *an empty external file into another host variable.
30 *SELECT the column containing the blob into the
31 *file host variable containing the blank external
32 *file. CLOSE and DROP the database. Inspect the
33 *external file "rettext01" after the program ends
34 *to verify that it contains blob data.
35 *
36 MAIN.
37 EXEC SQL
38 CONNECT TO DEFAULT
39 END-EXEC.
40 EXEC SQL CREATE DATABASE testname END-EXEC.
41 EXEC SQL
42 CREATE TABLE tab1 (column1 text)
43 END-EXEC.
44 MOVE "coblob.eco" TO HTEXT1.
45 EXEC SQL
46 INSERT INTO tab1 values (
47 :HTEXT1)
48 END-EXEC.
49 MOVE "rettext01" TO TRET1.
50 EXEC SQL
51 SELECT column1 INTO
52 :TRET1
53 FROM tab1
54 END-EXEC.
55 EXEC SQL
56 CLOSE DATABASE
57 END-EXEC.
58 EXEC SQL
59 DROP DATABASE TESTNAME
60 END-EXEC.
61 EXEC SQL DISCONNECT ALL END-EXEC.
62 STOP RUN.
63 *
2-30 INFORMIX-ESQL/COBOL Programmer’s Manual

Numeric-Formatting Routines
Numeric-Formatting Routines
You can use special run-time routines to format a numeric expression
according to a specific pattern. These formatting routines let you line up
decimal points, right or left justify numbers, put negative numbers in paren-
theses, and perform other kinds of formatting.

Figure 2-11 shows the numeric-formatting routines included in the libraries
distributed with INFORMIX-ESQL/COBOL. This section alphabetically lists
and describes those routines.

Figure 2-11
Descriptions of Numeric-Formatting Routines

In ESQL/COBOL, the routines listed in the preceding table return a character-
string representation of a given value for a specified format. The implemen-
tation defines an INTEGER. In other words, INTEGER represents 4-byte when
supported, otherwise INTEGER represents 2-byte.

Figure 2-12 shows the corresponding COBOL data type and COBOL
description for the arguments used in the numeric-formatting routines
discussed in this section.

Routine Name What It Does

ECO-FFL Returns a character string for a floating-point value

ECO-FIN Returns a character string for an INTEGER value
INFORMIX-ESQL/COBOL Data Types 2-31

Numeric-Formatting Routines
Figure 2-12
Correspondence Between Numeric-Formatting

Arguments and COBOL Data Types

INFORMIX-ESQL/COBOL implements the PIC S9(?), shown in the COBOL
Description column, as PIC S9(9) for a 4-byte integer or PIC S9(4) for a 2-byte
integer.

Figure 2-13 shows the COMP equivalents for the types of COBOL compilers
supported in ESQL/COBOL Version 7.2. Make sure you interpret the word
COMP in the COBOL Description column as shown in Figure 2-13.

Figure 2-13
COMP Equivalents for COBOL Compilers

Argument COBOL Type COBOL Description

FORMAT CHARACTER PIC X(LENGTH)

FORMAT-LEN INTEGER PIC S9(?) COMP

FVALUE INTEGER PIC S9(?) COMP

IVALUE INTEGER PIC S9(?) COMP

RESULT CHARACTER PIC X(LENGTH)

RESULT-LEN INTEGER PIC S9(?) COMP

STATUS INTEGER PIC S9(?) COMP

COMP Equivalent Type of COBOL

COMP-2 MF COBOL/2

COMP-5 MF COBOL/2

COMP-1 RM/COBOL-85
2-32 INFORMIX-ESQL/COBOL Programmer’s Manual

Formatting Numeric Strings
Formatting Numeric Strings
The numeric expression format string consists of combinations of the * & # <
, . - + () and $ characters. Figure 2-14 describes those characters.

Figure 2-14
Description of Characters Used in Numeric Formatting

Character Formatting Action

* Fills with asterisks any positions in the display field that otherwise
contains blanks.

& Fills with zeros any positions in the display field that otherwise con-
tains blanks.

Does not change any blank positions in the display field. Use this
character to specify a maximum width for a field.

< Left-justifies the numbers in the display field.

, This character represents a literal. It displays as a comma but only
when a number resides to its left.

. This character represents a literal. It displays as a period. Only one
period can exist in a format string.

- This character represents a literal. It displays as a minus sign when
expr1 is less than zero. When you group several in a row, a single
minus sign floats to the rightmost position without interfering with
the number being printed.

+ This character represents a literal. It displays as a plus sign when expr1
equals or exceeds zero and as a minus sign when less than zero. When
you group several plus signs in a row, a single plus sign floats to the
rightmost position without interfering with the number being
printed.

 (1 of 2)
INFORMIX-ESQL/COBOL Data Types 2-33

Formatting Numeric Strings
ESQL/COBOL allows the - + () and $ characters to float. When a character
floats, multiple leading occurrences of the character appear as a single
character as far to the right as possible, without interfering with the
displayed number.

When you use a nondefault locale, ECO-FFL uses the currency symbols that
the locale defines. For more information, see Chapter 1 of the Guide to GLS
Functionality. ♦

Figure 2-15 shows example format strings for numeric expressions. The
Formatted Result column uses the character b to represent a blank or space.

Figure 2-15
Format Strings, Values, and Results

(This character represents a literal. It displays as a left parenthesis
before a negative number. It represents accounting parenthesis used
in place of a minus sign to indicate a negative number. When you
group several in a row, a single left parenthesis floats to the rightmost
position without interfering with the number being printed.

) This represents the accounting parenthesis used in place of a minus
sign to indicate a negative number. A single one of these characters
generally closes a format string that begins with a left parenthesis.

$ This character represents a literal. It displays as a dollar sign. When
you group several in a row, a single dollar sign floats to the rightmost
position without interfering with the number being printed.

Character Formatting Action

 (2 of 2)

GLS

Format String Numeric Value Formatted Result

"#####" 0 bbbbb

 "&&&&&" 0 00000

 "$$$$$" 0 bbbb$

 "*****" 0 *****

 "<<<<<" 0 (null string)

 (1 of 7)
2-34 INFORMIX-ESQL/COBOL Programmer’s Manual

Formatting Numeric Strings
 "##,###" 12345 12,345

 "##,###" 1234 b1,234

 "##,###" 123 bbb123

 "##,###" 12 bbbb12

 "##,###" 1 bbbbb1

 "##,###" -1 bbbbb1

 "##,###" 0 bbbbbb

 "&&,&&&" 12345 12,345

 "&&,&&&" 1234 01,234

 "&&,&&&" 123 000123

 "&&,&&&" 12 000012

 "&&,&&&" 1 000001

 "&&,&&&" -1 000001

 "&&,&&&" 0 000000

 "$$,$$$" 12345 ****** (overflow)

 "$$,$$$" 1234 $1,234

 "$$,$$$" 123 bb$123

 "$$,$$$" 12 bbb$12

 "$$,$$$" 1 bbbb$1

 "$$,$$$" -1 bbbb$1

 "$$,$$$" 0 bbbbb$

Format String Numeric Value Formatted Result

 (2 of 7)
INFORMIX-ESQL/COBOL Data Types 2-35

Formatting Numeric Strings
 "**,***" 12345 12,345

 "**,***" 1234 *1,234

 "**,***" 123 ***123

 "**,***" 12 ****12

 "**,***" 1 *****1

 "**,***" 0 ******

"##,###.##" 12345.67 12,345.67

 "##,###.##" 1234.56 b1,234.56

 "##,###.##" 123.45 bbb123.45

 "##,###.##" 12.34 bbbb12.34

 "##,###.##" 1.23 bbbbb1.23

 "##,###.##" 0.12 bbbbbb.12

 "##,###.##" 0.01 bbbbbb.01

 "##,###.##" -0.01 bbbbbb.01

 "##,###.##" -1 bbbbb1.00

 "&&,&&&.&&" 12345.67 12,345.67

 "&&,&&&.&&" 1234.56 01,234.56

 "&&,&&&.&&" 123.45 000123.45

 "&&,&&&.&&" 0.01 000000.01

 "$$,$$$.$$" 12345.67 ********* (overflow)

 "$$,$$$.$$" 1234.56 $1,234.56

 "$$,$$$.##" 0.00 $.00

Format String Numeric Value Formatted Result

 (3 of 7)
2-36 INFORMIX-ESQL/COBOL Programmer’s Manual

Formatting Numeric Strings
 "$$,$$$.##" 1234.00 $1,234.00

 "$$,$$$.&&" 0.00 $.00

 "$$,$$$.&&" 1234.00 $1,234.00

 "-##,###.##" -12345.67 -12,345.67

 "-##,###.##" -123.45 -bbb123.45

 "-##,###.##" -12.34 -bbbb12.34

 "--#,###.##" -12.34 -bbb12.34

 "---,###.##" -12.34 -bb12.34

 "---,-##.##" -12.34 -12.34

 "---,--#.##" -1.00 -1.00

 "-##,###.##" 12345.67 12,345.67

 "-##,###.##" 1234.56 1,234.56

 "-##,###.##" 123.45 123.45

 "-##,###.##" 12.34 12.34

 "--#,###.##" 12.34 12.34

 "---,###.##" 12.34 12.34

 "---,-##.##" 12.34 12.34

 "---,---.##" 1.00 1.00

 "---,---.--" -.01 -.01

 "---,---.&&" -.01 -.01

Format String Numeric Value Formatted Result

 (4 of 7)
INFORMIX-ESQL/COBOL Data Types 2-37

Formatting Numeric Strings
"-$$$,$$$.&&" -12345.67 -$12,345.67

 "-$$$,$$$.&&" -1234.56 -b$1,234.56

 "-$$$,$$$.&&" -123.45 -bbb$123.45

 "--$$,$$$.&&" -12345.67 -$12,345.67

 "--$$,$$$.&&" -1234.56 -$1,234.56

 "--$$,$$$.&&" -123.45 -bb$123.45

 "--$$,$$$.&&" -12.34 -bbb$12.34

 "--$$,$$$.&&" -1.23 -bbbb$1.23

 "----,--$.&&" -12345.67 -$12,345.67

 "----,--$.&&" -1234.56 -$1,234.56

 "----,--$.&&" -123.45 -$123.45

 "----,--$.&&" -12.34 -$12.34

 "----,--$.&&" -1.23 -$1.23

 "----,--$.&&" -.12 -$.12

 "$***,***.&&" 12345.67 $*12,345.67

 "$***,***.&&" 1234.56 $**1,234.56

 "$***,***.&&" 123.45 $****123.45

 "$***,***.&&" 12.34 $*****12.34

 "$***,***.&&" 1.23 $******1.23

 "$***,***.&&" .12 $*******.12

Format String Numeric Value Formatted Result

 (5 of 7)
2-38 INFORMIX-ESQL/COBOL Programmer’s Manual

Formatting Numeric Strings
 "($$$,$$$.&&)" -12345.67 ($12,345.67)

 "($$$,$$$.&&)" -1234.56 (b$1,234.56)

 "($$$,$$$.&&)" -123.45 (bbb$123.45)

 "(($$,$$$.&&)" -12345.67 ($12,345.67)

 "(($$,$$$.&&)" -1234.56 ($1,234.56)

 "(($$,$$$.&&)" -123.45 (bb$123.45)

 "(($$,$$$.&&)" -12.34 (bbb$12.34)

 "(($$,$$$.&&)" -1.23 (bbbb$1.23)

 "((((,(($.&&)" -12345.67 ($12,345.67)

 "((((,(($.&&)" -1234.56 ($1,234.56)

 "((((,(($.&&)" -123.45 ($123.45)

 "((((,(($.&&)" -12.34 ($12.34)

 "((((,(($.&&)" -1.23 ($1.23)

 "((((,(($.&&)" -.12 ($.12)

"($$$,$$$.&&)" 12345.67 $12,345.67

 "($$$,$$$.&&)" 1234.56 $1,234.56

 "($$$,$$$.&&)" 123.45 $123.45

 "(($$,$$$.&&)" 12345.67 $12,345.67

 "(($$,$$$.&&)" 1234.56 $1,234.56

 "(($$,$$$.&&)" 123.45 $123.45

 "(($$,$$$.&&)" 12.34 $12.34

 "(($$,$$$.&&)" 1.23 $1.23

Format String Numeric Value Formatted Result

 (6 of 7)
INFORMIX-ESQL/COBOL Data Types 2-39

Formatting Numeric Strings
 "((((,(($.&&)" 12345.67 $12,345.67

 "((((,(($.&&)" 1234.56 $1,234.56

 "((((,(($.&&)" 123.45 $123.45

 "((((,(($.&&)" 12.34 $12.34

 "((((,(($.&&)" 1.23 $1.23

 "((((,(($.&&)" .12 $.12

 "<<<,<<<" 12345 12,345

 "<<<,<<<" 1234 1,234

 "<<<,<<<" 123 123

 "<<<,<<<" 12 12

Format String Numeric Value Formatted Result

 (7 of 7)
2-40 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-FFL
ECO-FFL

Purpose
Use ECO-FFL to return a character-string representation of a 4-byte floating-
point value for a given format.

Syntax
CALL ECO-FFL USING FVALUE, FORMAT, FORMAT-LEN, RESULT, RESULT-LEN,
STATUS.

FVALUE the 4-byte floating-point value that you provide

FORMAT the character buffer of length FORMAT-LEN that you
provide

FORMAT-LEN the length that you specify for FORMAT (INTEGER)

RESULT the character buffer of length RESULT-LEN that contains
the result ECO-FFL returns

RESULT-LEN the length that you specify for RESULT (INTEGER)

STATUS the error status code (INTEGER) that ECO-FFL returns

Usage
Some of the codes (listed in the next section) returned in the STATUS
parameter equal five characters in length. Thus, you can correctly identify
these codes only when you define the STATUS variable as S9(x), where x>=5.

When you use a nondefault locale that has a multibyte code set, the ECO-FFL
routine supports multibyte characters as formatting symbols. For more infor-
mation, see Chapter 6 of the Guide to GLS Functionality. ♦

Return Codes
0 Success.

-1211 Insufficient memory.

-1217 The format string exceeds the specified size.

GLS
INFORMIX-ESQL/COBOL Data Types 2-41

ECO-FFL
-22234 Insufficient buffer size. The ECO-FFL routine truncated the
result to fit the buffer.

-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.

Example
The following code fragment shows how to call the ECO-FFL routine. The
ECO-FFL routine works only with the Ryan-McFarland compiler. The Micro
Focus compiler does not accept floating-point numbers for input into this
routine.

.

.

.
CALL ECO-FFL USING FVALUE, FORMAT, FORMAT-LEN,
 RESULT, RESULT-LEN, STAT-CODE.
.
.
.

2-42 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-FIN
ECO-FIN

Purpose
Use ECO-FIN to return a character-string representation of an INTEGER value
for a given format.

Syntax
CALL ECO-FIN USING IVALUE, FORMAT, FORMAT-LEN, RESULT, RESULT-
LEN, STATUS.

IVALUE the INTEGER value that you provide

FORMAT the character buffer of length FORMAT-LEN that you
provide

FORMAT-LEN the length that you specify for FORMAT (INTEGER)

RESULT the character buffer of length RESULT-LEN that contains
the result ECO-FIN returns

RESULT-LEN the length that you specify for RESULT (INTEGER)

STATUS the error status code (INTEGER) that ECO-FIN returns

Usage
Some of the codes (listed in the next section) returned in the STATUS
parameter equal five characters in length. Thus, you can correctly identify
these codes only when you define the STATUS variable as S9(x), where x>=5.

When you use a nondefault locale that has a multibyte code set, the ECO-FIN
routine supports multibyte characters as formatting symbols. For more infor-
mation, see Chapter 6 of the Guide to GLS Functionality. ♦

Return Codes
0 Success.

-1211 Insufficient memory.

-1217 The format string exceeds the specified size.

GLS
INFORMIX-ESQL/COBOL Data Types 2-43

ECO-FIN
-22234 Insufficient buffer size. The ECO-FIN routine truncated the
result to fit the buffer.

-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.

Example
The following code fragment from the ECOFIN program, accepts an integer
value and formats it with a leading $ sign, leading spaces, and decimal value.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOFIN.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 IVALUE PIC S9(9) COMP-5 VALUE 34567.
15 77 FORMAT PIC X(20) VALUE "$############,###.&&".
16 77 FORMAT-LEN PIC S9(9) COMP-5 VALUE 20.
17 77 RESULT PIC X(20).
18 77 RESULT-LEN PIC S9(9) COMP-5 VALUE 20.
19 77 STAT-CODE PIC S9(9) COMP-5.
20 EXEC SQL END DECLARE SECTION END-EXEC.
21
22
23 PROCEDURE DIVISION.
24 RESIDENT SECTION
25 **
26
27 MAIN.
28 **
29 DISPLAY 'THIS IS A TEST OF ECO-FIN.'.
30 CALL ECO-FIN USING IVALUE, FORMAT, FORMAT-LEN,
31 RESULT, RESULT-LEN, STAT-CODE.
32 DISPLAY STAT-CODE.
33 DISPLAY IVALUE.
34 DISPLAY FORMAT.
35 DISPLAY RESULT.
36 STOP RUN.
2-44 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-FIN
Example Output
The output for the preceding code fragment displays the status plus the
integer value designated for formatting, the format for the value, and the
resulting formatted value with a dollar sign, leading spaces, and decimal.

THIS IS A TEST OF ECO-FIN.
+0000000000
+0000034567
$############,###.&&
$ 34,567.00
INFORMIX-ESQL/COBOL Data Types 2-45

3
Chapter
Working with Time Data Types
DATE Type Routines 3-3
ECO-DAT. 3-7
ECO-DAY. 3-10
ECO-DEF . 3-13
ECO-FMT. 3-18
ECO-JUL . 3-23
ECO-LYR . 3-26
ECO-MDY . 3-28
ECO-STR . 3-31
ECO-TDY. 3-33

DATETIME and INTERVAL Type Routines 3-35

ANSI SQL Standards for DATETIME and INTERVAL Values 3-36
ECO-DAI . 3-38
ECO-DSI . 3-42
ECO-DTC. 3-45
ECO-DTCVASC 3-47
ECO-DTS . 3-52
ECO-DTTOASC 3-57
ECO-DTX. 3-62
ECO-IDI . 3-65
ECO-IDN . 3-69
ECO-IMN. 3-73
ECO-INCVASC 3-77
ECO-INTOASC. 3-82
ECO-INX . 3-87
ECO-IQU . 3-90
ECO-SQU. 3-93

3-2 INFO
RMIX-ESQL/COBOL Programmer’s Manual

his chapter describes Informix run-time routines used for time data
type manipulation. The INFORMIX-ESQL/COBOL library extension includes
those routines. When you use the esqlcobol compiler shell script,
ESQL/COBOL automatically links the run-time routines.

Use those routines in your COBOL programs to convert and manipulate
DATE, DATETIME, and INTERVAL data types. ESQL/COBOL divides those
routines into nine DATE routines and fifteen DATETIME and/or INTERVAL
routines.

This chapter discusses the purpose and use of Time data types in
ESQL/COBOL. For more information on the DATE, DATETIME, and INTERVAL
data types, refer to the Informix Guide to SQL: Reference.

DATE Type Routines
This section describes the DATE type routines included in the libraries
distributed with INFORMIX-ESQL/COBOL Use these routines to convert dates
written in string form to and from an internal format.

Figure 3-1 shows the INFORMIX-ESQL/COBOL DATE routines and their
descriptions. This section alphabetically lists and describes
INFORMIX-ESQL/COBOL routines that manipulate DATE values.

T

Working with Time Data Types 3-3

DATE Type Routines
Figure 3-1
ESQL/COBOL DATE Type Routines and their Descriptions

INFORMIX-ESQL/COBOL stores a date as a 4-byte INTEGER whose value
equals the number of days occurring after December 31, 1899. Negative
numbers represent dates before December 31, 1899, and positive numbers
represent dates after December 31, 1899.

You can add and subtract numbers from DATE type values to produce a value
corresponding to a date that many days later or earlier. You can also subtract
two DATE types to get the number of days between them.

You must specify COBOL host variables that correspond to DATE data type
columns as one of two PICTURE clauses:

■ A DATE_TYPE, when you require a date in the form mm/dd/yyyy

■ A 4-byte INTEGER, when you require a date in the form of the
number of days occurring after December 31, 1899

Routine Name What It Does

ECO-DAT Converts an internal format to a string

ECO-DAY Returns the day of the week

ECO-DEF Converts a string to an internal format

ECO-FMT Converts an internal format to a string

ECO-JUL Returns the month, day, and year from an internal format

ECO-LYR Determines whether a specified year equals a leap year

ECO-MDY Returns an internal format from the month, day, and year

ECO-STR Converts a string to an internal format

ECO-TDY Returns the system date in an internal format
3-4 INFORMIX-ESQL/COBOL Programmer’s Manual

DATE Type Routines
When the following definitions appear in the DECLARE SECTION, the
variable DATE-DISPLAY represents the date January 1,1900 as the
characters 01/01/1900, while the variable DATE-NUMERIC contains the
integer value 1.

05 DATE-DISPLAY DATE_TYPE.
05 DATE-NUMERIC PIC S9(8) COMP.

The following compiler-specific limitations exist for COBOL routines that
manipulate DATE values:

■ RM/COBOL-85 uses a 2-byte integer for a standard integer.

■ MF COBOL/2 uses a 4-byte integer for a standard integer.

Figure 3-2 shows the correspondence between COBOL data types and
arguments used in the DATE routines discussed in this section.

Figure 3-2
Correspondences Between ESQL/COBOL

DATE Routines and COBOL Data Types

Figure 3-3 shows the COBOL data types and their corresponding PICTURE
declarations for the MF COBOL/2 and RM/COBOL- 85 compilers.

Argument COBOL Type

DAY DAY OF WEEK

FMT-LEN LENGTH

JDATE DATE

LEAP STATUS

MDY MDY

SDATE-LEN LENGTH

STATUS STATUS

TODAY DATE

YEAR YEAR
Working with Time Data Types 3-5

DATE Type Routines
Figure 3-3
Correspondences Between COBOL Data Types and

COBOL Compiler PICTURE Declarations

TYPE MF COBOL/2 Compiler RM/COBOL-85 Compiler

DAY OF WEEK S9(9) COMP-5 S9(5) COMP-1

LENGTH S9(9) COMP-5 S9(5) COMP-1

DATE S9(9) COMP-5 S9(9) COMP-4

STATUS S9(9) COMP-5 S9(5) COMP-1

YEAR S9(9) COMP-5 S9(5) COMP-1

MDY S9(9) COMP-5 OCCURS 3 S9(5) COMP-1 OCCURS 3
3-6 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DAT
ECO-DAT

Purpose
Use ECO-DAT to convert a 4-byte INTEGER date to a character-string date of
the form mm/dd/yyyy.

Syntax
CALL ECO-DAT USING JDATE, SDATE, SDATE-LEN.

JDATE the 4-byte INTEGER input date that the ECO-DEF routine
provides

SDATE the character buffer of length SDATE-LEN that contains the
result that ECO-DAT returns

SDATE-LEN the length that you specify for SDATE (standard INTEGER)

Usage
ECO-DAT lacks a STATUS parameter. Instead, this routine sets the internal
variable SQLCODE OF SQLCA. To check the SQLCA variable, call the ECO-GST
or ECO-SQC routine. Refer to pages 2-20 and 2-21, respectively, for
descriptions of those routines.

After you invoke the ECO-DAT routine, you can test SQLCODE with the
ECO-GST or ECO-SQC routines to check SQLCODE for an error code. (Zero
means no error). Refer to Chapter 4, “Error Handling,” for a discussion of
error handling and the SQLCA record.

When you use a nondefault locale and do not set DBDATE or GL_DATE, the
ECO-DAT routine uses the default date format that the locale defines. For
more information, see Chapter 6 of the Guide to GLS Functionality. ♦

When you use a 2-digit year (yy) in a format, the ECO-DAT routine uses the
setting of the DBCENTURY environment variable to determine the correct
century to use. When you do not set DBCENTURY, ECO-DAT assumes the 20th
century for 2-digit years. For information on how to set DBCENTURY, see
Chapter 4 of the Informix Guide to SQL: Reference.

GLS
Working with Time Data Types 3-7

ECO-DAT
Example
The following code fragment from the ECODAT program, creates an INTEGER
date with the ECO-DEF routine and converts that INTEGER to a character-
string date with the ECO-DAT routine.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODAT.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 JDATE PIC S9(9) COMP-5.
15 77 FMT PIC X(11) VALUE "mmm dd yyyy".
16 77 FMT-LEN PIC S9(9) COMP-5 VALUE 11.
17 77 SDATE PIC X(20) VALUE "Jan 15 1995".
18 77 SDATE-LEN PIC S9(9) COMP-5 VALUE 11.
19 77 STAT-CODE PIC S9(9) COMP-5.
20 *
21 77 SDATE-A PIC X(20).
22 77 SDATE-LEN-A PIC S9(9) COMP-5 VALUE 20.
23 EXEC SQL END DECLARE SECTION END-EXEC.
24
25
26 PROCEDURE DIVISION.
27 RESIDENT SECTION 1.
28 ***
29 MAIN.
30 ***
31 DISPLAY 'DATE STRING: 'SDATE.
32 DISPLAY 'CREATE INTEGER INPUT DATE.'.
33 CALL ECO-DEF USING JDATE, FMT, FMT-LEN, SDATE,
34 SDATE-LEN, STAT-CODE.
35 DISPLAY STAT-CODE.
36 DISPLAY JDATE
37 DISPLAY 'THIS IS A TEST OF ECODAT.'.
38 CALL ECO-DAT USING JDATE, SDATE-A, SDATE-LEN-A.
39 DISPLAY SDATE-A.
40 STOP RUN.
3-8 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DAT
Example Output
The output for the preceding code fragment displays the status code, the
output date (days occurring after December 31, 1899), and the character
buffer for ECO-DEF in the format mmm dd yyyy, plus the input value (days
occurring after December 31, 1899) and character buffer for ECO-DAT in the
format mm/dd/yyyy.

DATE STRING: Jan 15 1995
CREATE INTEGER INPUT DATE.
+0000000000
+0000034713
THIS IS A TEST OF ECO-DAT.
01/15/1995
Working with Time Data Types 3-9

ECO-DAY
ECO-DAY

Purpose
Use ECO-DAY to return the day of the week represented as a standard
INTEGER, given a 4-byte INTEGER date value.

Syntax
CALL ECO-DAY USING JDATE, DAY.

JDATE the 4-byte INTEGER input date that the ECO-DEF routine
provides

DAY the value (standard INTEGER) that ECO-DAY returns

Return Values
0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday
3-10 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DAY
Example
The following code fragment from the ECODAY program, produces an
INTEGER date value using the ECO-DEF routine and sends that date to the
ECO-DAY routine. Then, the ECO-DAY routine generates a numeric code for
the day of the week.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODAY.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 JDATE PIC S9(9) COMP-5.
15 77 FMT PIC X(11) VALUE "mmm dd yyyy".
16 77 FMT-LEN PIC S9(9) COMP-5 VALUE 11.
17 77 SDATE PIC X(20) VALUE "Jan 15 1995".
18 77 SDATE-LEN PIC S9(9) COMP-5 VALUE 11.
19 77 STAT-CODE PIC S9(9) COMP-5.
20 77 DAY CODE PIC S9(9) COMP-5.
21 EXEC SQL END DECLARE SECTION END-EXEC.
22
23
24 PROCEDURE DIVISION.
25 RESIDENT SECTION 1.
26 **
27 MAIN.
28 **
29 DISPLAY 'DATE STRING: ' SDATE.
30 DISPLAY 'PRODUCE AN INTEGER DATE VALUE.'.
31 CALL ECO-DEF USING JDATE, FMT, FMT-LEN, SDATE,
32 SDATE-LEN, STAT-CODE.
33 DISPLAY STAT-CODE.
34 DISPLAY JDATE.
35 DISPLAY 'THIS IS A TEST OF ECO-DAY.'.
36 CALL ECO-DAY USING JDATE, DAY-CODE.
37 DISPLAY 'DAY OF THE WEEK: ' DAY-CODE.
38 STOP RUN.
Working with Time Data Types 3-11

ECO-DAY
Example Output
The output for the preceding code fragment displays the status, the input
date (days occurring after December 31, 1899), and day of the week (Monday
for January 15th, 1995).

DATE STRING: Jan 15 1995
PRODUCE AN INTEGER DATE VALUE.
+0000000000
+0000034713
THIS IS A TEST OF ECO-DAY.
DAY OF THE WEEK: +0000000001
3-12 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DEF
ECO-DEF

Purpose
Use ECO-DEF to create a 4-byte INTEGER date whose value represents the
number of days occurring after December 31, 1899, for a character-string date
format that you provide.

Syntax
CALL ECO-DEF USING JDATE, FMT, FMT-LEN, SDATE, SDATE-LEN, STATUS.

JDATE the 4-byte INTEGER output date that ECO-DEF returns

FMT the format character buffer of length FMT-LEN that you
provide

FMT-LEN the length that you specify for FMT (standard INTEGER)

SDATE the character buffer of length SDATE-LEN that you provide

SDATE-LEN the length that you specify for SDATE (standard INTEGER)

STATUS the error status code (standard INTEGER) that ECO-DEF
returns

Usage
The string FMT uses the same formatting characters as ECO-FMT.

Make sure you specify the JDATE and the FMT string in the same sequential
order relating to month, day, and year. They need not, however, use the same
literals nor the same representation for month, day, and year.

Figure 3-4 shows the valid combinations of FMT and SDATE.
Working with Time Data Types 3-13

ECO-DEF
Figure 3-4
Valid Values for FMT and SDATE Character Buffers

Two of the codes, listed in the following section and returned in the STATUS
parameter, equal six characters in length (including the minus sign). Thus,
you can correctly identify these codes only when you define the STATUS
variable as S9(x), where x>=6.

When you use a 2-digit year (yy) in a format, the ECO-DEF routine uses the
setting of the DBCENTURY environment variable to determine the correct
century to use. When you do not set DBCENTURY, ECO-DEF assumes the 20th
century, as shown in the preceding table. For information on how to set
DBCENTURY, see Chapter 4 of the Informix Guide to SQL: Reference.

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in the FMT argument of the ECO-DEF routine. For
more information, see Chapter 6 of the Guide to GLS Functionality. ♦

FMT SDATE

 "mmddyyyy" "Jan. 15th, 1995"

 "mmm.dd.yyyy" "Jan 15 1995"

"mmm.dd.yyyy" "JAN-15-1995"

 "mmddyy" "011595"

 "mmddyy" "01/15/95"

 "yy/mm/dd" "95/01/15"

 "yyyy/mm/dd" "1995, January 15th"

 "yyyy/mm/dd" "In the year 1995, the month of January, its 15th day"

"dd-mm-yyyy" "This 15th day of January, 1995"

GLS
3-14 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DEF
Return Codes
0 Success.
-1204 You supplied an invalid year component in the SDATE

parameter.
-1205 You supplied an invalid month component in the SDATE

parameter.
-1206 You supplied an invalid day component in the SDATE

parameter.
-1212 The FMT does not contain a month, day, and year component.
-22234 Insufficient buffer size. The ECO-DEF routine truncated the

result to fit the buffer.
-22275 INTERNAL ERROR: You exceeded the temporary buffer length.
Working with Time Data Types 3-15

ECO-DEF
Example
The following code fragment from the ECODEF program, creates an INTEGER
that represents the number of days occurring after December 31, 1899 for
January 15th, 1995.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODEF.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 JDATE PIC S9(9) COMP-5.
15 77 FMT PIC X(11) VALUE "mmm dd yyyy".
16 77 FMT-LEN PIC S9(9) COMP-5 VALUE 11.
17 77 SDATE PIC X(20) VALUE "Jan 15 1995".
18 77 SDATE-LEN PIC S9(9) COMP-5 VALUE 11.
19 77 STAT-CODE PIC S9(9) COMP-5.
20 EXEC SQL END DECLARE SECTION END-EXEC.
21
22
23 PROCEDURE DIVISION.
24 RESIDENT SECTION
25 **
26 MAIN.
27 **
28 DISPLAY 'DATE STRING: ' SDATE.
29 DISPLAY 'THIS IS A TEST OF ECO-DEF.'.
30 CALL ECO-DEF USING JDATE, FMT, FMT-LEN, SDATE,
31 SDATE-LEN, STAT-CODE.
32 DISPLAY STAT-CODE.
33 DISPLAY 'NUMBER OF DAYS SINCE 12/31/1899: ' JDATE.
34 STOP RUN.
3-16 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DEF
Example Output
The output for the preceding code fragment displays the status and the
output date (days occurring after December 31, 1899) for January 15th, 1995.

DATE STRING: Jan 15 1995
THIS IS A TEST OF ECO-DEF.
+0000000000
NUMBER OF DAYS SINCE 12/31/1899: +0000034713
Working with Time Data Types 3-17

ECO-FMT
ECO-FMT

Purpose
Use ECO-FMT to convert a 4-byte INTEGER date to a character-string date
formatted according to a pattern.

Syntax
CALL ECO-FMT USING JDATE, FMT, FMT-LEN, SDATE, SDATE-LEN, STATUS.

JDATE the 4-byte INTEGER input date that the ECO-DEF routine
provides

FMT the format character buffer of length FMT-LEN that you
provide

FMT-LEN the length that you specify for FMT (standard INTEGER)

SDATE the character buffer of length SDATE-LEN that contains the
formatted date that ECO-FMT returns

SDATE-LEN the length that you specify for SDATE (standard INTEGER)

STATUS the error status code (standard INTEGER) that ECO-FMT
returns

Usage
The string FMT consists of combinations of the characters m, d, and y as
shown in the following table. The SDATE character buffer reproduces literally
the characters that reside in FMT, but does not reproduce those characters
shown in Figure 3-5.
3-18 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-FMT
Figure 3-5
Characters That the SDATE Character

Buffer Does Not Reproduce

Figure 3-6 converts the 4-byte INTEGER JDATE that corresponds to January
15, 1995, to a string SDATE using the format in FMT

Figure 3-6
Example of Date Conversion from 4-Byte Integer Format

to SDATE Value Using Format Specified by FMT

Characters Representation

dd Day of the month as a 2-digit number (01-31)

ddd Day of the week as a 3 letter abbreviation (Sun through
Sat)

mm Month as a 2-digit number (01-12)

mmm Month as a 3-letter abbreviation (Jan through Dec)

yy Year as a 2-digit number in the 1900s (00-99)

yyyy Year as a 4-digit number (0001-9999)

FMT SDATE

 "mmddyy" "011595"

 "ddmmyy" "150195"

 "yymmdd" "950115"

 "yy/mm/dd" "95/01/15"

 "yy mm dd" "95 01 15"

 "yy-mm-dd" "95-01-15"

 "mmm. dd, yyyy" "Jan. 15, 1995"

 "mmm dd yyyy" "Jan 15 1995"

 "yyyy dd mm" "1995 15 01"

 (1 of 2)
Working with Time Data Types 3-19

ECO-FMT
Two of the codes, listed in the following section and returned in the STATUS
parameter, equal six characters in length (including the minus sign). Thus,
you can correctly identify these codes only when you define the STATUS
variable as S9(x), where x>=6.

When you use a 2-digit year (yy) in a format, the ECO-FMT routine uses the
setting of the DBCENTURY environment variable to determine the correct
century to use. When you do not set DBCENTURY, ECO-FMT assumes the 20th
century, as shown in the preceding table. For information on how to set
DBCENTURY, see Chapter 4 of the Informix Guide to SQL: Reference.

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in the FMT argument of the ECO-FMT routine. For
more information, see Chapter 6 of the Guide to GLS Functionality. ♦

Return Codes

 "mmm dd yyyy" "Jan 15 1995"

 "ddd, mmm. dd, yyyy" "Sat, Jan. 15, 1995"

 "(ddd) mmm. dd, yyyy" "(Sat) Jan. 15, 1995"

0 Success.
-1210 ECO-FMT cannot convert the internal date cannot to a

month/day/year format.
-1211 Insufficient memory.
-22234 Insufficient buffer size. The ECO-FMT routine truncated the

result to fit the buffer.
-22275 INTERNAL ERROR: You exceeded the temporary buffer length.

FMT SDATE

 (2 of 2)

GLS
3-20 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-FMT
Example
The following code fragment from the ECOFMT program, creates an INTEGER
date with the ECO-DEF routine and converts that integer to a character string
formatted to a specific pattern using the ECO-FMT routine.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOFMT.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 JDATE PIC S9(9) COMP-5.
15 77 FMT PIC X(11) VALUE "mmm dd yyyy".
16 77 FMT-LEN PIC S9(9) COMP-5 VALUE 11.
17 77 SDATE PIC X(20) VALUE "Jan 15 1995".
18 77 SDATE-LEN PIC S9(9) COMP-5 VALUE 11.
19 77 STAT-CODE PIC S9(9) COMP-5.
20 *
21 77 FMT-A PIC X(8) VALUE "yy mm dd".
22 77 FMT-LEN-A PIC S9(9) COMP-5 VALUE 8.
23 77 SDATE-A PIC X(20).
24 77 SDATE-LEN-A PIC S9(9) COMP-5 VALUE 20.
25 77 STAT-CODE-A PIC S9(9) COMP-5.
26 EXEC SQL END DECLARE SECTION END-EXEC.
27
28 PROCEDURE DIVISION.
29 RESIDENT SECTION 1.
30 **
31 MAIN.
32 **
33 DISPLAY 'DATE VALUE: ' SDATE.
34 DISPLAY 'CREATE AN INTEGER DATE.'.
35 CALL ECO-DEF USING JDATE, FMT, FMT-LEN, SDATE,
36 SDATE LEN, STAT-CODE.
37 DISPLAY JDATE.
38 DISPLAY 'THIS IS A TEST OF ECO-FMT.'.
39 CALL ECO-FMT USING JDATE, FMT-A, FMT-LEN-A, SDATE-A,
40 SDATE-LEN-A, STAT-CODE-A.
41 DISPLAY STAT-CODE-A.
42 DISPLAY 'FORMAT: ' FMT-A.
Working with Time Data Types 3-21

ECO-FMT
43 DISPLAY SDATE-A.
44 STOP RUN.

Example Output
The output for the preceding code fragment displays the status code, the
output value (days occurring after December 31, 1899), and the character
buffer for ECO-DEF in the format mmm dd yyyy, plus the status code, the input
value (days occurring after December 31, 1899), and the character buffer for
ECO-FMT in the format yy mm dd.

DATE VALUE: Jan 15 1995
CREATE AN INTEGER DATE
+0000034713
THIS IS A TEST OF ECO-FMT.
+0000000000
FORMAT: yy mm dd
95 01 15
3-22 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-JUL
ECO-JUL

Purpose
Use ECO-JUL to create an array of three standard INTEGER values that contain
the month, day, and year components corresponding to a 4-byte INTEGER
date.

Syntax
CALL ECO-JUL USING JDATE, MDY, STATUS.

JDATE the 4-byte INTEGER input date that the ECO-DEF routine
provides

MDY the array containing month, day, year (standard
INTEGER) that ECO-JUL returns

STATUS the error status code (standard INTEGER) that ECO-JUL
returns

Return Codes
= 0 Success.

< 0 Failure.
Working with Time Data Types 3-23

ECO-JUL
Example
This following code fragment from the ECOJUL program, breaks out the
month, day, and year components for the input date.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOJUL.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 JDATE PIC S9(9) COMP-5.
15 77 FMT PIC X(11) VALUE "mmm dd yyyy".
16 77 FMT-LEN PIC S9(9) COMP-5 VALUE 11.
17 77 SDATE PIC X(20) VALUE "Jan 15 1995".
18 77 SDATE-LEN PIC S9(9) COMP-5 VALUE 11.
19 77 STAT-CODE PIC S9(9) COMP-5.
20 *
21 01 MON-DAY-YR.
22 02 MDY PIC S9(9) COMP-5 OCCURS 3 TIMES.
23 77 STAT-CODE-A PIC S9(9) COMP-5.
24 EXEC SQL END DECLARE SECTION END-EXEC.
25
26
27 PROCEDURE DIVISION.
28 RESIDENT SECTION 1.
29 ***
30 MAIN.
31 ***
32 DISPLAY 'DATE VALUE: ' SDATE.
33 DISPLAY 'CREATE AN INTEGER DATE.'.
34 CALL ECO-DEF USING JDATE, FMT, FMT-LEN, SDATE,
35 SDATE-LEN,STAT-CODE.
36 DISPLAY JDATE.
37 DISPLAY 'THIS IS A TEST OF ECO-JUL.'.
38 CALL ECO-JUL USING JDATE, MON-DAY-YR, STAT-CODE-A.
39 DISPLAY STAT-CODE-A.
40 DISPLAY 'MONTH: 'MDY(1).
41 DISPLAY 'DAY: 'MDY(2).
42 DISPLAY 'YEAR: 'MDY(3).
43 STOP RUN.
3-24 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-JUL
Example Output
The output for the preceding code fragment displays the status code and
output date (days occurring after December 31, 1899) for ECO-DEF, and the
status code, input date (days occurring after December 31, 1899), and month,
day, and year components for the ECO-JUL date.

DATE VALUE: Jan 15 1995
CREATE AN INTEGER DATE.
+0000034713
THIS IS A TEST OF ECO-JUL.
+0000000000
MONTH: +0000000001
DAY: +0000000015
YEAR +0000001995
Working with Time Data Types 3-25

ECO-LYR
ECO-LYR

Purpose
Use ECO-LYR to return 1 (TRUE) when YEAR equals a leap year and 0 (FALSE)
when YEAR does not equal a leap year.

Syntax
CALL ECO-LYR USING YEAR, LEAP.

YEAR the year (standard INTEGER) that you provide

LEAP the leap year indicator (standard INTEGER) that ECO-LYR
returns

Usage
The argument YEAR must contain only the year component of a date and not
the date itself.

You must express YEAR using a full year (such as 1996) and not an abbre-
viated year (such as 96).

Return Codes
The ECO-LYR routine returns one of the following codes in LEAP:

1 (TRUE) represents a leap year.

0 (FALSE) represents a non-leap year.
3-26 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-LYR
Example
The following code fragment from the ECOLYR program, takes an INTEGER
year that you provide and returns an INTEGER value representing a leap year
or no leap year.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOLYR.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 YEAR-NUM PIC S9(9) COMP-5 VALUE 1996.
15 77 LEAP-INDICATOR PIC S9(9) COMP-5.
16 EXEC SQL END DECLARE SECTION END-EXEC.
17
18
19 PROCEDURE DIVISION.
20 RESIDENT SECTION 1.
21 ***
22 MAIN.
23 ***
24 DISPLAY 'THIS IS A TEST OF ECO-LYR.'.
25 CALL ECO-LYR USING YEAR-NUM, LEAP-INDICATOR.
26 DISPLAY 'YEAR VALUE: 'YEAR-NUM.
27 DISPLAY 'LEAP YEAR : 'LEAP-INDICATOR.
28 STOP RUN.

Example Output
The output for the preceding code fragment displays the year 1996 and
returns the LEAP code 1 to indicate that 1996 was leap year.

THIS IS A TEST OF ECO-LYR.
YEAR VALUE: +0000001996
LEAP YEAR : +0000000001
Working with Time Data Types 3-27

ECO-MDY
ECO-MDY

Purpose
Use ECO-MDY to create a 4-byte INTEGER date from an array of three
standard INTEGER values that contain numeric values for the month, day,
and year.

Syntax
CALL ECO-MDY USING MDY, JDATE, STATUS.

MDY the array containing month, day, year (standard
INTEGER) that you provide

JDATE the 4-byte INTEGER output date that ECO-MDY returns

STATUS the error status code (standard INTEGER) that ECO-MDY
returns

Usage
You must specify the year as a full year (such as 1994) and not as an abbre-
viated year (such as 94).

Two of the codes, listed in the following section and returned in the STATUS
parameter, equal six characters in length (including the minus sign). Thus,
you can correctly identify these codes only when you define the STATUS
variable as S9(x), where x>=6.

Return Codes
0 Success.

-1204 An invalid year component resides in MDY(2).

-1205 An invalid month component resides in MDY(0).

-1206 An invalid day component resides in MDY(1).

-22234 Insufficient buffer size. The ECO-MDY routine truncated
the result to fit the buffer.
3-28 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-MDY
-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.

Example
The following code fragment from the ECOMDY program, takes an array
containing month, year, and day INTEGER values and creates an INTEGER
date using the ECO-MDY routine.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOMDY.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 JDATE PIC S9(9) COMP-5.
15 01 MON-DAY-YR.
16 02 MDY PIC S9(9) COMP-5 OCCURS 3 TIMES.
17 77 STAT-CODE PIC S9(9) COMP-5.
18 EXEC SQL END DECLARE SECTION END-EXEC.
19
20
21 PROCEDURE DIVISION.
22 RESIDENT SECTION 1.
23 **
24 MAIN.
25 **
26 DISPLAY 'THIS IS A TEST OF ECO-MDY.'.
27 MOVE 01 TO MDY(1).
28 MOVE15 TO MDY(2).
29 MOVE 1995 TO MDY(3).
30 DISPLAY 'MONTH VALUE: ' MDY(1).
31 DISPLAY 'DAY VALUE: ' MDY(2).
32 DISPLAY 'YEAR VALUE: ' MDY(3).
33 CALL ECO-MDY USING MON-DAY-YR, JDATE, STAT-CODE.
34 DISPLAY STAT-CODE.
35 DISPLAY 'INTEGER REPRESENTATION: 'JDATE.
36 STOP RUN.
Working with Time Data Types 3-29

ECO-MDY
Example Output
The output for the preceding code fragment displays the status code and
INTEGER input date (days occurring after December 31, 1899) created from a
month, day, and year array.

THIS IS A TEST OF ECO-MDY.
MONTH VALUE: +0000000001
DAY VALUE: +0000000015
YEAR VALUE +0000001995
+0000000000
INTEGER REPRESENTATION: 0000034713
3-30 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-STR
ECO-STR

Purpose
Use ECO-STR to convert a character-string date to a 4-byte INTEGER date.

Syntax
CALL ECO-STR USING SDATE, SDATE-LEN, JDATE, STATUS.

SDATE the character buffer of length SDATE-LEN that you provide

SDATE-LEN the length that you specify for SDATE (standard INTEGER)

JDATE the 4-byte INTEGER output date that ECO-STR returns

STATUS the error status code (standard INTEGER) that ECO-STR
returns

Usage
SDATE must contain a numeric month, day, and year, in that order. Use a
hyphen, backslash, or period as a separator between the month, day, and
year. You can specify the year as two or four characters (for example, 94 or
1994).

When you use a nondefault locale and do not set DBDATE or GL_DATE, the
ECO-STR routine uses the default date format that the locale defines. For more
information, see Chapter 6 of the Guide to GLS Functionality. ♦

When you use a 2-digit year (yy) in a format, the ECO-STR routine uses the
setting of the DBCENTURY environment variable to determine the correct
century to use. When you do not set DBCENTURY, ECO-STR assumes the 20th
century for 2-digit years. For information on how to set DBCENTURY, see
Chapter 4 of the Informix Guide to SQL: Reference.

Return Codes
= 0 Success.

< 0 Failure.

GLS
Working with Time Data Types 3-31

ECO-STR
Example
The following code fragment from the ECOSTR program converts a character
string date into an INTEGER date using the routine ECO-STR.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOSTR.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 JDATE PIC S9(9) COMP-5.
15 77 SDATE PIC X(10) VALUE "01-15-1995".
16 77 SDATE-LEN PIC S9(9) COMP-5 VALUE 10.
17 77 STAT-CODE PIC S9(9) COMP-5.
18 EXEC SQL END DECLARE SECTION END-EXEC.
19
20
21 PROCEDURE DIVISION.
22 RESIDENT SECTION 1.
23 **
24 MAIN.
25 **
26 DISPLAY 'THIS IS A TEST OF ECO-STR.'.
27 DISPLAY 'DATE STRING VALUE: ' SDATE.
28 CALL ECO-STR USING SDATE, SDATE-LEN, JDATE, STAT-CODE.
29 DISPLAY STAT-CODE.
30 DISPLAY 'INTEGER REPRESENTATION: 'JDATE.
31 STOP RUN.

Example Output
The output from the preceding code fragment displays the status and output
date (days occurring after December 31, 1899).

THIS IS A TEST OF ECO-STR.
DATE STRING VALUE: 01-15-1995
+0000000000
INTEGER REPRESENTATION: +0000034713
3-32 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-TDY
ECO-TDY

Purpose
Use ECO-TDY to put the system date into a 4-byte INTEGER date.

Syntax
CALL ECO-TDY USING TODAY.

TODAY the 4-byte INTEGER output date

Usage
You move the system date into TODAY. When you call the ECO-TDY routine,
ECO-TDY converts the data contained in TODAY into a 4-byte INTEGER date.
Working with Time Data Types 3-33

ECO-TDY
Example
The following code fragment accepts the system date and displays that date
as an integer date using the ECO-TDY routine.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOTDY.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION ECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 TODAY PIC S9(9) COMP-5.
15 EXEC SQL END DECLARE SECTION END-EXEC.
16
17
18 PROCEDURE DIVISION.
19 RESIDENT SECTION 1.
20 **
21 MAIN.
22 **
23 DISPLAY 'THIS IS A TEST OF ECO-TDY.'.
24 ACCEPT TODAY FROM DATE.
25 DISPLAY 'TODAY ' TODAY.
26 CALL ECO-TDY USING TODAY.
27 DISPLAY 'INTEGER REPRESENTATION: 'TODAY.
28 STOP RUN.

Example Output
The preceding code fragment displays the integer output date (days
occurring after December 31, 1899). The following output assumes that
January 15th, 1995 is the current system date.

THIS IS A TEST OF ECO-TDY.
TODAY: +0000950115
INTEGER REPRESENTATION: +0000034713
3-34 INFORMIX-ESQL/COBOL Programmer’s Manual

DATETIME and INTERVAL Type Routines
DATETIME and INTERVAL Type Routines
The DATETIME data type stores an instant in time expressed as a calendar
date and time of day. The INTERVAL data type stores a value that represents
a span of time. That time span can encompass either a span of years and
months or a span of days, hours, minutes, seconds, and fractions of a second.

INFORMIX-ESQL/COBOL provides a number of built-in routines to manip-
ulate DATETIME and INTERVAL values. DATETIME and INTERVAL exist as
character buffers that contain a DATETIME or INTERVAL ASCII string literal.

Figure 3-7 lists the routines included in the ESQL/COBOL package that
manipulate character strings in proper DATETIME and INTERVAL format.
This section alphabetically lists and discusses those routines.

Figure 3-7
Descriptions of ESQL/COBOL DATETIME and INTERVAL Routines

Routine Name What It Does

ECO-DAI Adds an INTERVAL string to a DATETIME string

ECO-DSI Subtracts an INTERVAL value from a DATETIME value

ECO-DTC Determines the current DATETIME value

ECO-DTCVASC Converts specified format string to ANSI DATETIME
format

ECO-DTS Subtracts two DATETIME strings

ECO-DTTOASC Converts ANSI DATETIME string to specified format

ECO-DTX Extends a DATETIME value to a different qualifier

ECO-IDI Divides an INTERVAL value by an INTERVAL value

ECO-IDN Divides an INTERVAL value by a numeric value

ECO-IMN Multiplies an INTERVAL value with a numeric value

ECO-INCVASC Converts specified format string to ANSI INTERVAL format

ECO-INTOASC Converts ANSI INTERVAL string to specified ASCII format

 (1 of 2)
Working with Time Data Types 3-35

ANSI SQL Standards for DATETIME and INTERVAL Values
The following sections discuss the DATETIME and INTERVAL data types
described in Figure 3-7. The preceding routines use an implementation-
defined INTEGER. The INTEGER length equals 4-bytes when supported:
otherwise, the INTEGER length equals 2-bytes.

Important: You must set the DBTIME environment variable before calling
ECO-DTCVASC or ECO-DTTOASC for these routines to work properly. These
routines support DATETIME information for the parts of the world that do not follow
the ANSI SQL standard for representing date and time. When you do not set
DBTIME, your program uses the default DBTIME setting. Refer to the “Informix
Guide to SQL: Reference” for information on how to set DBTIME.

ANSI SQL Standards for DATETIME and INTERVAL
Values
The ANSI SQL standards specify qualifiers and formats for character
representations of DATETIME and INTERVAL values. The standard qualifier
for a DATETIME value is year to second, and the standard format is shown in
the following example:

YYYY-MM-DD HH:MM:SS

The standards for an INTERVAL value specify two different classes of
intervals known as year to month and day to fraction. The following example
shows the format of the year to month class:

YYYY-MM

ECO-INX Extends an INTERVAL value to a different qualifier

ECO-IQU Determines INTEGER qualifier for character-string
qualifier

ECO-SQU Determines character-string qualifier for INTEGER
qualifier

Routine Name What It Does

 (2 of 2)
3-36 INFORMIX-ESQL/COBOL Programmer’s Manual

ANSI SQL Standards for DATETIME and INTERVAL Values
You can also consider a subset of the preceding format as valid (for example,
just a month interval).

The following example shows the format of the day to fraction class:

DD HH:MM:SS.F

You can consider any subset of contiguous fields as valid (for example,
minute to fraction).

You can also set the DBTIME environment variable to specify a format that
differs from the ANSI standards (For example, a format that uses different
delimiters). For information on DBTIME, refer to the Informix Guide to SQL:
Reference.
Working with Time Data Types 3-37

ECO-DAI
ECO-DAI

Purpose
Use ECO-DAI to add an INTERVAL value to a DATETIME value. ECO-DAI
stores the resulting DATETIME value in RESULT.

Syntax
CALL ECO-DAI USING DATE, DATE-LEN, DATE-QUAL, INV, INV-LEN, INV-
QUAL, RESULT, RESULT-LEN, STATUS.

DATE the DATETIME value that you provide

DATE-LEN the length that you specify for DATE (INTEGER)

DATE-QUAL the qualifier of DATE (INTEGER) that the ECO-IQU routine
provides

INV the INTERVAL value that you provide

INV-LEN the length that you specify for INV (INTEGER)

INV-QUAL the qualifier of INV (INTEGER) that the ECO-IQU routine
provides

RESULT the resultant DATETIME value that ECO-DAI returns

RESULT-LEN the length that you specify for RESULT (INTEGER)

STATUS the error status code (INTEGER) that ECO-DAI returns

Usage
Two of the codes, listed in the following section and returned in the STATUS
parameter, equal six characters in length (including the minus sign). Thus,
you can correctly identify these codes only when you define the STATUS
variable as S9(x), where x>=6.
3-38 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DAI
Return Codes
 0 Success.
-1204 An invalid DATETIME value resides in the DATE parameter.
-1266 You cannot use incompatible INTERVAL and/or DATETIME

values.
-1267 The result of the DATETIME computation exceeds the allowed

range.
-22234 Insufficient buffer size. The ECO-DAI routine truncated the

result to fit the buffer.
-22275 INTERNAL ERROR: You exceeded the temporary buffer length.
Working with Time Data Types 3-39

ECO-DAI
Example
The following code fragment from the ECODAI program tests the ECO-DAI
routine. The code fragment accepts a DATETIME and INTERVAL qualifier
from the routine ECO-IQU, adds an INTERVAL value to a DATETIME value,
and displays the result.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODAI.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 QTYPE PIC S9(9) COMP-5 VALUE 0.
15 77 SQUAL PIC X(30) VALUE "year to month".
16 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
17 77 IQUAL PIC S9(9) COMP-5.
18 77 STAT-CODE-A PIC S9(9) COMP-5.
19 *
20 77 ZQUAL PIC S9(9) COMP-5.
21 *
22 77 DATE-VAL PIC X(30) VALUE "1995-7".
23 77 DATE-LEN PIC S9(9) COMP-5 VALUE 30.
24 77 DATE-QUAL PIC S9(9) COMP-5.
25 77 INV PIC X(30) VALUE "1-3".
26 77 INV-LEN PIC S9(9) COMP-5 VALUE 30.
27 77 INV-QUAL PIC S9(9) COMP-5.
28 77 RESULT PIC X(30).
29 77 RESULT-LEN PIC S9(9) COMP-5 VALUE 30.
30 77 STAT-CODE-B PIC S9(9) COMP-5.
31 EXEC SQL END DECLARE SECTION END-EXEC.
32
33 PROCEDURE DIVISION.
34 RESIDENT SECTION 1.
35 ******** ***
36 MAIN.
37 **
38 DISPLAY 'INITIALIZE BOTH VALUES OF ECO-IQU.'.
39 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, IQUAL,
40 STAT-CODE-A.
41 DISPLAY IQUAL.
3-40 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DAI
42 MOVE 1 TO QTYPE.
43 MOVE "year to month" TO SQUAL.
44 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, ZQUAL,
45 STAT-CODE-A.
46 DISPLAY ZQUAL.
47 MOVE IQUAL TO DATE-QUAL.
48 MOVE ZQUAL TO INV-QUAL.
49 DISPLAY 'THIS IS A TEST OF ECO-DAI.'.
50 CALL ECO-DAI USING DATE-VAL, DATE-LEN, DATE-QUAL,
51 INV, INV-LEN, INV-QUAL, RESULT,
52 RESULT-LEN, STAT-CODE-B.
53 DISPLAY STAT-CODE-B.
54 DISPLAY 'DATETIME VALUE: ' DATE-VAL.
55 DISPLAY 'INTERVAL VALUE: ' INV.
56 DISPLAY 'RESULT OF ADDITION: ' RESULT.
57 STOP RUN.

Example Output
The output for the preceding code fragment displays the initialized values
for the INTERVAL and DATETIME qualifiers from ECO-IQU, plus the status
code, year-to-month DATETIME value, DATETIME qualifier, INTERVAL value,
INTERVAL qualifier, and the result of the addition of an INTERVAL value to a
DATETIME value for ECO-DAI.

INITIALIZE BOTH VALUES OF ECO-IQU.
+0000001538
+0000001538
THIS IS A TEST OF ECO-DAI.
+0000000000
DATETIME VALUE: 1995-7
INTERVAL VALUE: 1-3
RESULT OF ADDITION: 1996-10
Working with Time Data Types 3-41

ECO-DSI
ECO-DSI

Purpose
Use ECO-DSI to subtract an INTERVAL value from a DATETIME value.

Syntax
CALL ECO-DSI USING DT, DT-LEN, DT-QUAL, INV, INV-LEN, INV-QUAL,
DTRES, DTRES-LEN, STATUS.

DT the DATETIME value that you provide

DT-LEN the length that you specify for DT (standard INTEGER)

DT-QUAL the qualifier of DT (standard INTEGER) that the ECO-IQU
routine provides

INV the INTERVAL value that you provide

INV-LEN the length that you specify for INV (standard INTEGER)

INV-QUAL the qualifier of INV (standard INTEGER) that the ECO-IQU
routine provides

DTRES the resultant DATETIME value that ECO-DSI returns

DTRES-LEN the length that you specify for DTRES (standard INTEGER)

STATUS the error status code (standard INTEGER) that ECO-DSI
returns

Usage
The ECO-DSI routine subtracts the INTERVAL value in INV from the
DATETIME value in DT. The ECO-DSI routine stores the resulting DATETIME
value in DTRES.

DTRES inherits the DT qualifier.

You must set the INTERVAL value to either the year-to-month or day-to-
fraction(5) range.

Make sure you include all the fields present in the INTERVAL value in the
DATETIME value.
3-42 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DSI
Return Codes
= 0 Success.

< 0 Failure.

Example
The following code fragment from the ECODSI program accepts a DATETIME
and an INTERVAL qualifier from ECO-IQU, subtracts an INTERVAL value from
a DATETIME value, and displays the result.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODSI.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 QTYPE PIC S9(9) COMP-5 VALUE 0.
18 77 SQUAL PIC X(30) VALUE "year to month".
19 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
20 77 STAT-CODE-A PIC S9(9) COMP-5.
21 77 DATE-VAL PIC X(30) VALUE "1995-10".
22 77 DATE-LEN PIC S9(9) COMP-5 VALUE 30.
23 77 DATE-QUAL PIC S9(9) COMP-5.
24 77 INV PIC X(30) VALUE "1-3".
25 77 INV-LEN PIC S9(9) COMP-5 VALUE 30.
26 77 INV-QUAL PIC S9(9) COMP-5.
27 77 DTRES PIC X(30).
28 77 DTRES-LEN PIC S9(9) COMP-5 VALUE 30.
29 77 STAT-CODE-B PIC S9(9) COMP-5.
30 EXEC SQL END DECLARE SECTION END-EXEC.
31 *
32 PROCEDURE DIVISION.
33 RESIDENT SECTION 1.
34 *
Working with Time Data Types 3-43

ECO-DSI
35 *
36 *Begin Main routine. Initialize both values of
37 *ECO-IQU producing two integer qualifiers; an
38 *INTERVAL and a DATETIME value.
39 *Use the values generated by ECO-IQU
40 *as input values for ECO-DSI. Display the
41 *resultant DATETIME value.
42 *
43 MAIN.
44 DISPLAY 'INITIALIZE BOTH VALUES OF ECO-IQU.'.
45 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN,
46 DATE QUAL, STAT-CODE-A.
47 DISPLAY DATE-QUAL.
48 MOVE 1 TO QTYPE.
49 MOVE "year to month" to SQUAL.
50 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, INV-QUAL,
51 STAT-CODE-A.
52 DISPLAY INV-QUAL.
53 *
54 DISPLAY 'THIS IS A TEST OF ECO-DSI.'
55 CALL ECO-DSI USING DATE-VAL, DATE-LEN, DATE-QUAL, INV,
56 INV-LEN,INV-QUAL, DTRES, DTRES-LEN, STAT-CODE-B.
57 DISPLAY STAT-CODE-B.
58 DISPLAY 'DATETIME VALUE: ' DATE-VAL.
59 DISPLAY 'INTERVAL VALUE: ' INV.
60 DISPLAY 'RESULT OF SUBTRACTION: ' DTRES.
61 DISPLAY ' '.
62 STOP RUN.
63 *

Example Output
The output for the preceding code fragment displays the status, the input
date, the DATETIME qualifier, the INTERVAL value, the INTERVAL qualifier,
and the output date (the input date minus the INTERVAL value).

INITIALIZE BOTH VALUES OF ECO-IQU.
+0000001538
+0000001538
THIS IS A TEST OF ECO-DSI.
+0000000000
DATETIME VALUE: 1995-10
INTERVAL VALUE: 1-3
RESULT OF SUBTRACTION: 1994-07
3-44 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTC
ECO-DTC

Purpose
Use ECO-DTC to determine the current DATETIME value.

Syntax
CALL ECO-DTC USING DATE, DATE-LEN, STATUS.

DATE the DATETIME value. You place the system date into DATE
with an ACCEPT statement. ECO-DTC changes the
contents of DATE into a DATETIME value.

DATE-LEN the length that you specify for DATE (INTEGER)

STATUS the error status code (INTEGER) that ECO-DTC returns

Return Codes
= 0 Success.

< 0 Failure.
Working with Time Data Types 3-45

ECO-DTC
Example
The following code fragment from the ECODTC program accepts the current
date and determines the current DATETIME value.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODTC.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 DATE-VAL PIC X(30).
15 77 DATE-LEN PIC S9(9) COMP-5 VALUE 30.
16 77 STAT-CODE PIC S9(9) COMP-5.
17 EXEC SQL END DECLARE SECTION END-EXEC.
18
19
20 PROCEDURE DIVISION.
21 RESIDENT SECTION 1.
22 **
23 MAIN.
24 **
25 DISPLAY 'THIS IS A TEST OF ECO-DTC.'.
26 ACCEPT DATE-VAL FROM DATE.
27 CALL ECO-DTC USING DATE-VAL, DATE-LEN, STAT-CODE.
28 DISPLAY 'CURRENT DATE: ' DATE-VAL.
29 DISPLAY STAT-CODE.
30 STOP RUN.

Example Output
The output for the preceding code fragment displays the DATETIME value for
the input date, January 15th, 1995, and the status.

THIS IS A TEST OF ECO-DTC.
CURRENT DATE: 1995-01-15 08:53:00.630
+0000000000
3-46 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTCVASC
ECO-DTCVASC

Purpose
Use ECO-DTCVASC to convert a string with a specified format to an ANSI
DATETIME string.

Syntax
CALL ECO-DTCVASC USING STR, STR-LEN, FMTSTR, FMTSTR-LEN, DT, DT-
LEN, DT-QUAL, STATUS.

STR the address of the input DATETIME string in the format of
FMTSTR that you provide

STR-LEN the length that you specify for STR

FMTSTR the address of the format string for the input (STR), using
the directives defined for DBTIME. When you leave the
FMTSTR string empty, the ECO-DTCVASC routine uses the
format that the DBTIME environment variable specifies.
When you do not set DBTIME and leave the FMTSTR
string empty, the ECO-DTCVASC routine uses the ANSI
SQL format, causing unpredictable results. For informa-
tion on how to set DBTIME, refer to the Informix Guide to
SQL: Reference. You provide the value for FMTSTR.

FMTSTR-LEN the length that you specify for FMTSTR

DT the address of the resulting ANSI DATETIME string that
ECO-DTVASC returns

DT-LEN the length that you specify for DT

DT-QUAL the qualifier for DT that the ECO-IQU routine provides

STATUS the error status code that ECO-DTCVASC returns
Working with Time Data Types 3-47

ECO-DTCVASC
Usage
The input string can contain leading and trailing spaces. However, from the
first to the last significant digit, ECO-DTCVASC accepts only digit and
delimiter characters appropriate to the fields that the format string implies.

When calling ECO-DTCVASC, make sure you use only contiguous fields in the
DATETIME input string. In other words, when you specify an hour-to-second
qualifier, make sure the values for hour, minute, and second reside in the
string (not necessarily in that order) or an error results.

The ECO-DTCVASC routine does not require you to make the output qualifier
match the input qualifier that the format string specifies. When you use an
output qualifier that differs from the input qualifier, ECO-DTCVASC performs
extensions as shown in the following list:

■ Discards STR fields not included in DT

■ Uses the current time and date to fill in fields to the left of the most-
significant field in STR

■ Uses zeros to fill in fields to the right of the least-significant field in
STR

If you specify a valid input string and format specification, ECO-DTCVASC
sets the output value returns zero in STATUS. Otherwise, ECO-DTCVASC
returns an error code and the output string produces unpredictable results.

If DT lacks sufficient size, ECO-DTCVASC truncates the result and returns an
error.

One of the codes, listed in the following section and returned in the STATUS
parameter, equals six characters in length (including the minus sign). Thus,
you can correctly identify this code only when you define the STATUS
variable as S9(x), where x>=6.
3-48 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTCVASC
Return Codes
-1211 Insufficient memory.

-1260 You cannot convert between the specified types.

-1261 The first field of a DATETIME or INTERVAL value contains
too many digits.

-1262 A nonnumeric character resides in a DATETIME or
INTERVAL value.

-1263 An incorrect or out of range field resides in a DATETIME
or INTERVAL value.

-1264 Extra characters exist at the end of a DATETIME or
INTERVAL value.

-1265 An overflow occurred on a DATETIME or INTERVAL
operation.

-1266 Incompatible INTERVAL or DATETIME values exist.

-1267 A DATETIME computation result exceeds the allowed
range.

-1268 Invalid DATETIME qualifier.

-1271 Missing decimal point in fraction.

-1272 You did not specify an input buffer.

-1273 The output buffer either cannot hold the result due to
insufficient size or contains a null value.

-1275 Invalid field width for a DATETIME or INTERVAL format
string.

-1276 Unsupported format conversion character.

-1277 Input does not match format specification.

-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.
Working with Time Data Types 3-49

ECO-DTCVASC
Example
The following two example code fragments convert a string with a specified
format to an ANSI DATETIME string. Both code fragments initialize the DT
argument to the date of a fictional birthday party. The input and output
qualifiers are the same (month to minute).

1 *The input and output qualifiers are the same (month to minute)
2
3 MOVE "June 9 at 01:30pm" TO STR.
4 MOVE 17 TO STR-LEN.
5
6 *Note the absence of field-width and precision specification
7 *in the input format string.
8 MOVE "%B %d at %I:%M%p" TO FMTSTR.
9 MOVE 16 TO FMTSTR-LEN.

10
11 MOVE 0 TO FLAG.
12 MOVE "MONTH TO MINUTE" TO QUAL.
13 MOVE 15 TO QUAL-LEN.
14
15 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, DT-QUAL, STAT.
16 IF STAT < 0
17 DISPLAY 'DT-QUAL ERROR ', STAT.
18
19 MOVE 50 TO DT-LEN.
20
21 *'DT' will be set to "06-09 13:30"
22
23 CALL ECO-DTCVASC USING STR, STR-LEN, FMTSTR, FMTSTR-LEN,
24 DT, DT-LEN, DT-QUAL, STAT.
25 IF STAT < 0
26 DISPLAY 'DT-CVASC ERROR ', STAT.
27 *The input and output qualifiers are different:
28 *input qual : month to minute
29 *output qual: year to minute
30
31 MOVE "June 9 at 01:30pm" TO STR.
32 MOVE 17 TO STR-LEN.
33
34 MOVE "%B %d at %I:%M%p" TO FMTSTR.
35 MOVE 16 TO FMTSTR-LEN.
36 MOVE 0 TO FLAG.
37 MOVE "YEAR TO MINUTE" TO QUAL.
38 MOVE 14 TO QUAL-LEN.
39
40 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, DT-QUAL, STAT.
41 IF STAT < 0
42 DISPLAY 'DT-QUAL ERROR ', STAT.
43
44 MOVE 50 TO DT-LEN.
45 *'DT' will be set to "XXXX-06-09 13:30"
46 *Notice that the output has been extended, and the year
3-50 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTCVASC
47 *is set to current year.
48
49 CALL ECO-DTCVASC USING STR, STR-LEN, FMTSTR, FMTSTR-LEN,
50 DT, DT-LEN, DT-QUAL, STAT.
51 IF STAT < 0
52 DISPLAY 'DT-CVASC ERROR ', STAT.
Working with Time Data Types 3-51

ECO-DTS
ECO-DTS

Purpose
Use ECO-DTS to subtract two DATETIME values. The ECO-DTS routine stores
an INTERVAL value in RESULT.

Syntax
CALL ECO-DTS USING DATE1, DATE1-LEN, DATE1-QUAL, DATE2, DATE2-LEN,
DATE2-QUAL, RESULT, RESULT-LEN, RESULT-QUAL, STATUS.

DATE1 the DATETIME value that you provide

DATE1-LEN the length that you specify for DATE1 (INTEGER)

DATE1-QUAL the qualifier of DATE1 (INTEGER) that the ECO-IQU
routine provides

DATE2 the DATETIME value that you provide

DATE2-LEN the length that you specify for DATE2 (INTEGER)

DATE2-QUAL the qualifier of DATE2 (INTEGER) that the ECO-IQU
routine provides

RESULT the resultant INTERVAL value that ECO-DTS returns

RESULT-LEN the length that you specify for RESULT (INTEGER)

RESULT-QUAL the qualifier of RESULT (INTEGER) that the ECO-IQU
routine provides

STATUS the error status code (INTEGER) that ECO-DTS returns
3-52 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTS
Usage
Exercise caution when you use the ECO-DTS routine to subtract two
DATETIME values. ECO-DTS takes two DATETIME parameters and their corre-
sponding qualifiers and returns a resulting INTERVAL in the format that the
INTERVAL qualifier specifies. To get the best results, observe the following
guidelines:

■ The qualifiers must conform to the SQL standards as specified in the
Informix Guide to SQL: Reference and the Informix Guide to SQL: Syntax.

■ The ranges of the two DATETIME qualifiers must overlap.

■ The range of the resulting INTERVAL qualifier must overlap the range
of the first DATETIME qualifier.

■ The result can overflow.

The following two code fragments work correctly, where DATETIME 1
subtracts DATETIME 2.

■ The following example does not return an error when the desired
INTERVAL result resides in the month-to-month or year-to-month range:
DATETIME 1 = "1995-12"(year-to-month)
DATETIME 2 = "1995-11"(year-to-month)

■ The following example does not return an error when the desired
INTERVAL result resides in the day-to-hour, day-to-minute, or day-to-
second range:
DATETIME 1 = "12-10 12:20" (month-to-minute)
DATETIME 2 = "12-09 11:10:10" (month-to-second)
Working with Time Data Types 3-53

ECO-DTS
The next two code fragments return an error, where DATETIME 1 subtracts
DATETIME 2.

■ The following example returns an error when the desired INTERVAL
result spans the day-to-minute range because the ranges of DATETIME
1 and DATETIME 2 do not overlap, nor does the range of DATETIME
1 overlap that of the INTERVAL qualifier:
DATETIME 1 = "1995-12"(year-to-month)
DATETIME 2 = "10 10:10"(day-to-minute)

■ The following example returns an error when the desired INTERVAL
result spans the day-to-hour range because an overflow occurred, so
ESQL/COBOL cannot store the result of the operation in the
INTERVAL. However, when the desired INTERVAL result spans the
year-to-month range, an overflow does not occur (and thus, no error).
DATETIME 1 = "1995-12-10"(year-to-day)
DATETIME 2 = "1995-12-10 10"(year-to-hour)

Return Codes
= 0 Success.

< 0 Failure.
3-54 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTS
Example
The following code fragment from the ECODTS program tests the ECO-DTS
routine. The code fragment accepts two DATETIME qualifiers from the
ECO-IQU routine, subtracts the two DATETIME values, and returns a result of
type INTERVAL.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODTS.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 DATE-VAL-1 PIC X(30) VALUE "1998-7".
15 77 DATE-LEN-1 PIC S9(9) COMP-5 VALUE 30.
16 77 DATE-QUAL-1 PIC S9(9) COMP-5.
17 77 DATE-VAL-2 PIC X(30) VALUE "1995-5".
18 77 DATE-LEN-2 PIC S9(9) COMP-5 VALUE 30.
19 77 DATE-QUAL-2 PIC S9(9) COMP-5.
20 77 RESULT PIC X(30).
21 77 RESULT-LEN PIC S9(9) COMP-5 VALUE 30.
22 77 RESULT-QUAL PIC S9(9) COMP-5.
23 77 STAT-CODE PIC S9(9) COMP-5.
24 *
Working with Time Data Types 3-55

ECO-DTS
25 77 QTYPE PIC S9(9) COMP-5 VALUE 0.
26 77 SQUAL PIC X(30) VALUE "year to month".
27 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
28 77 IQUAL PIC S9(9) COMP-5.
29 77 STAT-CODE-A PIC S9(9) COMP-5.
30 EXEC SQL END DECLARE SECTION END-EXEC.
31
32 PROCEDURE DIVISION.
33 RESIDENT SECTION 1.
34 **
35 MAIN.
36 **
37 DISPLAY 'INITIALIZE ECO-IQU.'.
38 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, IQUAL,
39 STAT-CODE-A.
40 DISPLAY IQUAL.
41 MOVE IQUAL TO DATE-QUAL-1.
42 MOVE IQUAL TO DATE-QUAL-2.
43 MOVE IQUAL TO RESULT-QUAL.
44 DISPLAY 'THIS IS A TEST OF ECO-DTS.'.
45 CALL ECO-DTS USING DATE-VAL-1, DATE-LEN-1,
46 DATE-QUAL-1,DATE-VAL-2, DATE-LEN-2, DATE-QUAL-2,
47 RESULT, RESULT-LEN, RESULT-QUAL, STAT-CODE.
48 DISPLAY STAT-CODE.
49 DISPLAY 'DATETIME VALUE 1: ' DATE-VAL-1.
50 DISPLAY 'DATETIME VALUE 2: ' DATE-VAL-2.
51 DISPLAY 'RESULT OF SUBTRACTION: ' RESULT.
52 STOP RUN.

Example Output
The output for the preceding code fragment displays the status code, year-to-
month DATETIME value, DATETIME qualifier type, and INTEGER qualifier for
ECO-IQU, plus the status code, first DATETIME value, second DATETIME
value, and the result of subtracting the second value from the first with
ECO-DTS.

INITIALIZE ECO-IQU.
+0000001538
THIS IS A TEST OF ECO-DTS.
+0000000000
DATETIME VALUE 1: 1998-7
DATETIME VALUE 2: 1995-5
RESULT OF SUBTRACTION: 3-02
3-56 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTTOASC
ECO-DTTOASC

Purpose
Use ECO-DTTOASC to convert a string in ANSI DATETIME format to a string
in the specified localized format.

Syntax
CALL ECO-DTTOASC USING DT, DT-LEN, DT-QUAL, FMTSTR, FMTSTR-LEN,
RES, RES-LEN, STATUS.

DT stores the original DATETIME character string that you
provide

DT-LEN the length that you specify for DT (INTEGER)

DT-QUAL specifies the INTEGER qualifier for DT that receives its
value from the ECO-IQU routine

FMTSTR the address of the format string for the output (RES), using
the directives defined for DBTIME. You provide the value
for FMTSTR. When you use the ECO-DTTOASC routine,
always specify a format string for FMTSTR. Also, make
sure you set the DBTIME environment variable before you
use the ECO-DTTOASC routine. For information on how to
set DBTIME, refer to the Informix Guide to SQL: Reference.

FMTSTR-LEN the length that you specify for FMTSTR

RES stores the resulting formatted character-string representa-
tion of the DATETIME value that ECO-DTTOASC

RES-LEN the length that you specify for RES

STATUS the error status code that ECO-DTTOASC returns
Working with Time Data Types 3-57

ECO-DTTOASC
Usage
The ECO-DTTOASC routine does not require you to make the output qualifier
match the input qualifier that the format string specifies. When the output
differs from the input qualifier, ECO-DTTOASC performs extensions as shown
in the following list:

■ Discards fields in STR not included in DT

■ Uses the current time and date to fill in fields to the left of the most-
significant field in STR

■ Uses zeros to fill in fields to the right of the least-significant field in
STR

If you specify a valid input string and format specification, ECO-DTTOASC
sets the output value and returns zero in STATUS. Otherwise, ECO-DTTOASC
returns an error code and the output string contains unpredictable results.

If RES lacks sufficient size to hold the return string, ECO-DTTOASC truncates
the return string and returns an error code in STATUS.

One of the codes, listed in the following section and returned in the STATUS
parameter, equals six characters in length (including the minus sign). Thus,
you can correctly identify this code only when you define the STATUS
variable as S9(x), where x>=6.

When you use a 2-digit year (yy) in a format, the ECO-DTTOASC routine uses
the setting of the DBCENTURY environment variable to determine the correct
century to use. When you do not set DBCENTURY, ECO-DTTOASC assumes
the 20th century for 2-digit years. For information on how to set
DBCENTURY, see Chapter 4 of the Informix Guide to SQL: Reference.

When you use a nondefault locale (one other than U.S. ASCII English) and do
not set DBTIME or GL_DATETIME, the ECO-DTTOASC routine uses the
default DATETIME format that the locale defines. For more information, see
Chapter 6 of the Guide to GLS Functionality. ♦

GLS
3-58 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTTOASC
Return Codes
-1211 Insufficient memory.

-1260 You cannot convert between the specified types.

-1261 The first field of a DATETIME or INTERVAL value contains
too many digits.

-1262 A non-numeric character resides in a DATETIME or
INTERVAL value.

-1263 An incorrect or out of range field resides in a DATETIME
or INTERVAL value.

-1264 Extra characters exist at the end of a DATETIME or
INTERVAL value.

-1265 An overflow occurred on a DATETIME or INTERVAL
operation.

-1266 Incompatible INTERVAL or DATETIME values exist.

-1267 A DATETIME computation result exceeds the allowed
range.

-1268 Invalid DATETIME qualifier.

-1271 Missing decimal point in fraction.

-1272 You did not specify an input buffer.

-1273 The output buffer either cannot hold the result due to
insufficient size or contains a null value.

-1275 Invalid field width for a DATETIME or INTERVAL format
string.

-1276 Unsupported format conversion character.

-1277 Input does not match format specification.

-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.
Working with Time Data Types 3-59

ECO-DTTOASC
Example
In the following two code fragments, ECO-DTTOASC converts a string in ANSI
DATETIME format to a string in the specified format.

1 *The input and output qualifiers are the same (hour to second)
2
3 MOVE "01:30:20" TO DT.
4 MOVE 8 TO DT-LEN.
5
6 MOVE 0 TO FLAG.
7 MOVE "HOUR TO SECOND" TO QUAL.
8 MOVE 14 TO QUAL-LEN.
9

10 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, DT-QUAL, STAT.
11 IF STAT < 0
12 DISPLAY 'DT-QUAL ERROR ', STAT.
13
14 MOVE "%H h %M m %S s" TO FMTSTR.
15 MOVE 14 TO FMTSTR-LEN.
16
17 MOVE 50 TO RES-LEN.
18
19 *'RES' will be set to "01 h 30 m 20 s"
20 *Use field-width specification to avoid leading zeros
21 *(E.g. %1H).
22
23 CALL ECO-DTTOASC USING DT, DT-LEN, DT-QUAL, FMTSTR,
24 FMTSTR-LEN, RES, RES-LEN, STAT.
25 IF STAT < 0
26 DISPLAY 'DT-TOASC ERROR ', STAT.

1 *The input and output qualifiers are different
2 *input qual : hour to second
3 *output qual: year to second (ANSI SQL default qualifier)
4
5 MOVE "01:30:20" TO DT.
6 MOVE 8 TO DT-LEN.
7
8 MOVE 0 TO FLAG.
9 MOVE "HOUR TO SECOND" TO QUAL.

10 MOVE 14 TO QUAL-LEN.
11
12 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, DT-QUAL, STAT.
13 IF STAT < 0
14 DISPLAY 'DT-QUAL ERROR ', STAT.
15
16 *FMTSTR is not initialized.
17 MOVE 50 TO FMTSTR-LEN.
18
19 MOVE 50 TO RES-LEN.
20
3-60 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTTOASC
21 *'RES' will be set to "XXXX-XX-XX 01:30:20"
22 *Notice that the output has been extended, and year-month-day
23 *fields are set to current year, month and day.
24
25 CALL ECO-DTTOASC USING DT, DT-LEN, DT-QUAL, FMTSTR,
26 FMTSTR-LEN, RES, RES-LEN, STAT.
27 IF STAT < 0
28 DISPLAY 'DT-TOASC ERROR ', STAT.
Working with Time Data Types 3-61

ECO-DTX
ECO-DTX

Purpose
Use ECO-DTX to extend a DATETIME value to a different qualifier.

Syntax
CALL ECO-DTX USING DT, DT-LEN, DT-QUAL, DTRES, DTRES-LEN, DTRES-
QUAL, STATUS.

DT the DATETIME value that you provide

DT-LEN the length that you specify for DT (standard INTEGER)

DT-QUAL the qualifier of DT (standard INTEGER) that the ECO-IQU
routine provides

DTRES the resulting DATETIME value that ECO-DTX returns

DTRES-LEN the length that you specify for DTRES (standard INTEGER)

DTRES-QUAL the desired qualifier for DTRES (standard INTEGER) that
the ECO-IQU routine provides

STATUS the error status code (standard INTEGER) that ECO-DTX
provides

Usage
The ECO-DTX routine extends the DT fields to the qualifier specified in
DTRES-QUAL.

The ECO-DTX routine discards the DT fields that the qualifier specified in
DTRES-QUAL does not include.

For fields not in DT, but specified in DTRES-QUAL, ECO-DTX takes the
following actions:

■ Uses zeros to fill in fields to the right of the least significant field in DT

■ Uses the current time and date to fill in fields to the left of the most
significant field in DT
3-62 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-DTX
Return Code
-1268 Invalid DATETIME or INTERVAL qualifier.

Example
The following code fragment from the ECODTX program sets a DATETIME
value to the date of December 25th for the current year. The ECO-DTX routine
generates the current year.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECODTX.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 QTYPE PIC S9(9) COMP-5.
18 77 SQUAL PIC X(30).
19 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
20 77 DT PIC X(30).
21 77 DT-LEN PIC S9(9) COMP-5 VALUE 30.
22 77 DT-QUAL PIC S9(9) COMP-5.
23 77 DTRES PIC X(30).
24 77 DTRES-LEN PIC S9(9) COMP-5 VALUE 30.
25 77 DTRES-QUAL PIC S9(9) COMP-5.
26 77 STAT PIC S9(9) COMP-5 VALUE 30.
27 EXEC SQL END DECLARE SECTION END-EXEC.
28 *
29 PROCEDURE DIVISION.
30 RESIDENT SECTION 1.
31 *
32 *Begin Main routine. Initialize both source and
33 *result qualifiers with ECO-IQU. Extend a DATETIME
34 *value to a different qualifier using ECO-DTX.
35 *Display the resultant value.
36 *
37 MAIN.
Working with Time Data Types 3-63

ECO-DTX
38 MOVE 0 TO QTYPE.
39 MOVE "12-25" TO DT.
40 MOVE "month to day" TO SQUAL.
41 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, DT-QUAL, STAT.
42 DISPLAY ' DT-QUAL = ', DT-QUAL.
43 MOVE "year to hour" TO SQUAL.
44 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, DTRES-QUAL,
45 STAT.
46 DISPLAY 'RES-QUAL = ', DTRES-QUAL.
47 *
48 DISPLAY 'EXTEND DT FROM "MONTH TO DAY" TO "YEAR TO HOUR"'.
49 CALL ECO-DTX USING DT, DT-LEN, DT-QUAL, DTRES,
50 DTRES-LEN, DTRES-QUAL, STAT.
51 DISPLAY ' DT = ', DT.
52 DISPLAY 'RES = ', DTRES.
53 DISPLAY ' STATUS = ', STAT.
54 STOP RUN.
55 *

Example Output
The output for the preceding code fragment displays the DATETIME qualifier
and the INTEGER qualifier from ECO-IQU. The ECO-DTX function displays the
DATETIME value and the output date (December 25th, 1994).

DT-QUAL = +0000001060
RES-QUAL = +0000002566
EXTEND DT FROM "MONTH TO DAY" TO "YEAR TO HOUR"
DT = 12-25
RES = 1994-12-25 00
3-64 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-IDI
ECO-IDI

Purpose
Use ECO-IDI to divide an INTERVAL value using another INTERVAL value. For
example, imagine that you want to find the number of production cycles (a
time period or INTERVAL value measures each cycle) for a given time period
(an INTERVAL value). To solve that problem, you divide an INTERVAL value
using another INTERVAL value to produce a resultant numeric value (number
of time periods or intervals).

Syntax
CALL ECO-IDI USING INV1, INV1-LEN, INV1-QUAL, INV2, INV2-LEN,
INV2-QUAL, NUMRES, STATUS.

INV1 the INTERVAL value (dividend) that you provide

INV1-LEN the length that you specify for INV1 (standard INTEGER)

INV1-QUAL the qualifier of INV1 (standard INTEGER) that the
ECO-IQU routine provides

INV2 the INTERVAL value (divisor) that you provide

INV2-LEN the length that you specify for INV2 (standard INTEGER)

INV2-QUAL the desired qualifier for INV2 (standard INTEGER) the
ECO-IQU routine provides

NUMRES the numeric result (8-byte floating type) that ECO-IDI
returns

STATUS the error status code (standard INTEGER) that ECO-IDI
returns
Working with Time Data Types 3-65

ECO-IDI
Usage
Make sure you set both the input and output qualifiers to either the year-to-
month or day-to-fraction(5) range.

INV2 divides INV1 and ECO-IDI stores the result in NUMRES. The ECO-IDI
routine uses the following formula:

INV1/INV2 = NUMRES

A positive or negative result can reside in NUMRES.

Example
The following code fragment from the ECOIDI program illustrates how an
INTERVAL value divides another INTERVAL value.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOIDI.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 QTYPE PIC S9(9) COMP-5.
18 77 SQUAL PIC X(30).
19 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
20 77 INV1 PIC X(30).
21 77 INV1-LEN PIC S9(9) COMP-5 VALUE 30.
22 77 INV1-QUAL PIC S9(9) COMP-5.
23 77 INV2 PIC X(30).
24 77 INV2-LEN PIC S9(9) COMP-5 VALUE 30.
25 77 INV2-QUAL PIC S9(9) COMP-5.
26 77 NUMRES PIC S9(10)V9(8) COMP-3.
27 77 STAT PIC S9(9) COMP-5 VALUE 30.
28 EXEC SQL END DECLARE SECTION END-EXEC.
29 *
3-66 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-IDI
30 77 DISPRES PIC +9(10).9(8) USAGE DISPLAY.
31 *
32 PROCEDURE DIVISION.
33 RESIDENT SECTION 1.
34 *
35 *Begin Main routine. Initialize both source and
36 *result qualifiers with the ECO-IQU routine. Divide
37 *an INTERVAL value with another INTERVAL value using
38 *the ECO-IDI routine. Display the resultant value.
39 *
40 MAIN.
41 MOVE 1 TO QTYPE.
42 MOVE "hour to minute" TO SQUAL.
43 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN,
44 INV1-QUAL, STAT.
45 DISPLAY 'INV1-QUAL = ', INV1-QUAL.
46 MOVE "hour to minute" TO SQUAL.
47 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN,
48 INV2-QUAL, STAT.
49 DISPLAY 'INV2-QUAL = ', INV2-QUAL.
50 *
51 MOVE "75:27" TO INV1.
52 MOVE "19:10" TO INV2.
53 DISPLAY 'DIVIDE "HOUR TO MINUTE"...'.
54 DISPLAY 'BY "HOUR TO MINUTE"'.
55 CALL ECO-IDI USING INV1, INV1-LEN, INV1-QUAL,
56 INV2, INV2-LEN, INV2-QUAL, NUMRES, STAT.
57 DISPLAY 'STATUS = ', STAT.
58 DISPLAY 'INV1 = ', INV1.
59 DISPLAY 'INV2 = ', INV2.
60 MOVE NUMRES TO DISPRES.
61 DISPLAY 'RES = ', DISPRES..
62 STOP RUN.
63 *
Working with Time Data Types 3-67

ECO-IDI
Example Output
The output for the preceding code fragment displays the qualifiers of the
dividend and divisors, the status code that ECO-IDI returns, the dividend and
divisor, and the unformatted and formatted result. The following output tells
you that three of the specified hour-to-minute INTERVAL units reside in the
specified hour-to-minute INTERVAL value.

INV1-QUAL = +0000001128
INV2-QUAL = +0000001128
DIVIDE "HOUR TO MINUTE"...
BY INV2 "HOUR TO MINUTE"
STATUS = +0000000000
INV1 = 75:27
INV2 = 19:10
RES = +0000000003.93652174
3-68 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-IDN
ECO-IDN

Purpose
Use ECO-IDN to divide an INTERVAL value using a numeric value. For
example, imagine that you already specified a given time period for
production (an INTERVAL value) and you knew how many production cycles
(a numeric value) you wanted to run in that time period, but you did not
know the length and type of each cycle (the resulting interval value). To make
that issue possible, use a numeric value to divide the interval value to
produce a resultant interval value.

Syntax
CALL ECO-IDN USING INV, INV-LEN, INV-QUAL, NUM, INVRES, INVRES-
LEN, INVRES-QUAL, STATUS.

INV the INTERVAL value that you provide

INV-LEN the length that you specify for INV (standard INTEGER)

INV-QUAL the qualifier of INV (standard INTEGER) that the ECO-IQU
routine provides

NUM the numeric value (8-byte floating type) that you provide

INVRES the resulting INTERVAL value that ECO-IDN returns

INVRES-LEN the length that you specify for INVRES (standard
INTEGER)

INVRES-QUAL the desired qualifier for INVRES (standard INTEGER) that
the ECO-IQU routine provides

STATUS the status error code (standard INTEGER) that ECO-IDN
returns
Working with Time Data Types 3-69

ECO-IDN
Usage
Make sure you set both the input and output qualifiers to either the year-to-
month or day-to-fraction(5) range.

NUM divides INV and ECO-IDN stores the result in INVRES. The ECO-IDN
routine uses the following formula to determine the resulting value:

INV/NUM=INVRES

A positive or negative value can reside in NUM.

If the INVRES qualifier differs from the INV qualifier, ECO-IDN extends the
result as defined within the ECO-INX routine.

Example
The following code fragment from the ECOIDN program illustrates dividing
an INTERVAL value using a numeric value using the ECO-IDN routine. It illus-
trates the result of INTERVAL division when the input and output qualifiers
differ.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOIDN.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
3-70 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-IDN
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 QTYPE PIC S9(9) COMP-5.
18 77 SQUAL PIC X(30).
19 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
20 77 INV PIC X(30).
21 77 INV-LEN PIC S9(9) COMP-5 VALUE 30.
22 77 INV-QUAL PIC S9(9) COMP-5.
23 77 INVRES PIC X(30).
24 77 INVRES-LEN PIC S9(9) COMP-5 VALUE 30.
25 77 INVRES-QUAL PIC S9(9) COMP-5.
26 77 NUM PIC S9(10)V9(8) COMP-3.
27 77 STAT PIC S9(9) COMP-5 VALUE 30.
28 EXEC SQL END DECLARE SECTION END-EXEC.
29 *
30 PROCEDURE DIVISION.
31 RESIDENT SECTION 1.
32 *
33 *Begin Main routine. Initialize both source and result
34 *qualifiers by using the ECO-IQU routine. Divide the INTERVAL
35 *value by a numeric value using the ECO-IDN routine. Display
36 *the resultant value.
37 *
38 MAIN.
39 MOVE 1 TO QTYPE.
40 MOVE "hour to minute" TO SQUAL.
41 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, INV-QUAL, STAT.
42 DISPLAY 'INV-QUAL = ', INV-QUAL.
43 MOVE "hour to minute" TO SQUAL.
44 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN,
45 INVRES-QUAL, STAT.
46 DISPLAY 'RES-QUAL = ', INVRES-QUAL.
47 *
48 MOVE "25:15" TO INV.
49 MOVE 5.00 TO NUM.
50 DISPLAY 'DIVIDE INV "HOUR TO MINUTE" ',INV.
51 DISPLAY 'BY ',NUM.
52 CALL ECO-IDN USING INV, INV-LEN, INV-QUAL, NUM,
53 INVRES, INVRES-LEN, INVRES-QUAL, STAT.
54 DISPLAY 'STATUS = ', STAT.
55 DISPLAY 'INV = ', INV.
56 DISPLAY 'RES = ', INVRES.
57 STOP RUN.
58 *
Working with Time Data Types 3-71

ECO-IDN
Example Output
The output for the preceding code fragment displays the two INTERVAL
qualifiers, the status code, the INTERVAL value divided by the number 5.00,
and the resulting INTERVAL value.

INV-QUAL = +0000001128
RES-QUAL = +0000001128
DIVIDE INV "HOUR TO MINUTE" 25:15
BY +000000000500000000
STAT = +0000000000
INV = 25:15
RES = 5:03
3-72 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-IMN
ECO-IMN

Purpose
Use ECO-IMN to multiply an INTERVAL value by a numeric value.

Syntax
CALL ECO-IMN USING INV, INV-LEN, INV-QUAL, NUM, INVRES, INVRES-
LEN, INVRES-QUAL, STATUS.

INV the INTERVAL value that you provide

INV-LEN the length that you provide for INV (standard INTEGER)

INV-QUAL the qualifier of INV (standard INTEGER) that the ECO-IQU
routine provides

NUM the numeric value (8-byte floating type) that you provide

INVRES the resulting INTERVAL value that ECO-IMN returns

INVRES-LEN the length that you specify for INVRES (standard
INTEGER)

INVRES-QUAL the desired qualifier for INVRES (standard INTEGER) that
the ECO-IQU routine provides

STATUS the error status code (standard INTEGER) that ECO-IMN
returns
Working with Time Data Types 3-73

ECO-IMN
Usage
The ECO-IMN routine multiplies INV by NUM and stores the result in INVRES.
The ECO-IMN routine uses the following formula to determine the resulting
value:

INV*NUM=INVRES

Make sure you set the input and output qualifiers to the year-to-month or day-
to-fraction(5) range.

NUM multiplies INV and ECO-IMN stores the result in INVRES. A positive or
a negative value can reside in NUM.

If the qualifier for INVRES differs from the qualifier for INV, ECO-IMN extends
the result as defined in the ECO-INX routine.
3-74 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-IMN
Example
The following code fragment from the ECOIMN program illustrates multi-
plying an INTERVAL value by a numeric value using the ECO-IMN routine.
The code fragment illustrates the result of INTERVAL multiplication when the
input and output qualifiers differ.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOIMN.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 QTYPE PIC S9(9) COMP-5.
18 77 SQUAL PIC X(30).
19 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
20 77 INV PIC X(30).
21 77 INV-LEN PIC S9(9) COMP-5 VALUE 30.
22 77 INV-QUAL PIC S9(9) COMP-5.
23 77 INVRES PIC X(30).
24 77 INVRES-LEN PIC S9(9) COMP-5 VALUE 30.
25 77 INVRES-QUAL PIC S9(9) COMP-5.
26 77 NUM PIC S9(10)V9(8) COMP-3.
27 77 STAT PIC S9(9) COMP-5 VALUE 30.
28 EXEC SQL END DECLARE SECTION END-EXEC.
29 *
30 PROCEDURE DIVISION.
31 RESIDENT SECTION 1.
32 *
33 *Begin Main routine. Initialize both source and
34 *result qualifiers using ECO-IQU. Multiply an
35 *INTERVAL value by a numeric value using the ECO-IMN
36 *routine. This generates a resultant value.
37 *
38 MAIN.
39 MOVE 1 TO QTYPE.
40 MOVE "hour to minute" TO SQUAL.
41 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN,
Working with Time Data Types 3-75

ECO-IMN
42 INV-QUAL, STAT.
43 DISPLAY 'INV-QUAL = ', INV-QUAL.
44 MOVE "hour to minute" TO SQUAL.
45 CALL ECO-IQU USING QTYPE, SQUAL,
46 SQUAL-LEN, INVRES-QUAL, STAT.
47 DISPLAY 'RES-QUAL = ', INVRES-QUAL.
48 *
49 MOVE "12:15" TO INV.
50 MOVE 5.0 TO NUM.
51 DISPLAY 'MULTIPLY INV "HOUR TO MINUTE" ',INV,'BY ',NUM.
52 CALL ECO-IMN USING INV, INV-LEN, INV-QUAL, NUM, INVRES,
53 INVRES-LEN, INVRES-QUAL, STAT.
54 DISPLAY 'STATUS = ', STAT.
55 DISPLAY 'INV = ', INV.
56 DISPLAY 'RES = ', INVRES.
57 DISPLAY ' '.
58 STOP RUN.
59 *

Example Output
The output for the preceding code fragment displays the INTERVAL qualifier,
the numeric value used to multiply the INTERVAL value, the status code, the
INTERVAL value, and the resulting INTERVAL value after multiplication.

INV-QUAL = +0000001128
RES-QUAL = +0000001128
MULTIPLY INV "HOUR TO MINUTE" 12:15 BY +000000000500000000
STAT = +0000000000
INV = 12:15
RES = 61:15
3-76 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-INCVASC
ECO-INCVASC

Purpose
Use ECO-INCVASC to convert a string with a specified format to an ANSI
INTERVAL string.

Syntax
CALL ECO-INCVASC USING STR, STR-LEN, FMTSTR, FMTSTR-LEN, INTRVL,
INTRVL-LEN, INTRVL-QUAL, STATUS.

STR the address of the input INTERVAL string in the format of
FMTSTR that you provide

STR-LEN the length that you specify for STR

FMTSTR the address of the format string for the input (STR) that
you provide

FMTSTR-LEN the length that you specify for FMTSTR

INTRVL the address of the resulting ANSI INTERVAL string that
ECO-INCVASC returns

INTRVL-LEN the length that you specify for INTRVL

INTRVL-QUAL the qualifier for INTRVL that the ECO-IQU routine
provides

STATUS the error status code that ECO-INCVASC returns

Usage
The input string can contain leading and trailing spaces. However, from the
first to last significant digit, ECO-INCVASC accepts only digits and delimiters
appropriate to the fields that the formatted string implies.

When you call ECO-INCVASC, make sure you use only contiguous fields in
the INTERVAL input string. If, for example, you specify the qualifier as hour-
to-second, you must make sure that the values for hour, minute, and second
reside in the string (not necessarily in that order). Otherwise, you receive an
error.
Working with Time Data Types 3-77

ECO-INCVASC
ECO-INCVASC does not require you to make the output qualifier match the
input qualifier as the format string specifies. When the output qualifier
differs from the input qualifier, ECO-INCVASC converts the result to appro-
priate units. However, both the input and the output must represent an
interval with a span of year-to-month or day-to-fraction.

If you provide a valid input string and format specification, ECO-INCVASC
sets the output value and returns zero in STATUS. Otherwise, ECO-INCVASC
returns an error code and the output string contains unpredictable results.

If you use an empty FMTSTR argument, ECO-INCVASC returns an error.
Figure 3-8 shows the formatting directives you can use in FMTSTR.

Figure 3-8
Formatting Directives for FMTSTR

If INTRVL lacks sufficient size, ECO-INCVASC truncates the result and returns
an error.

String Use

%d replaced with the day of the month as a decimal number [01,31].

%Fn replaced with the value of the fraction with precision that the integer
n specifies. The default value of n equals 2; the range of n equals 0 <=
n <= 5.

%H replaced with the hour (24-hour clock) as a decimal number [00,23].

%I replaced with the hour (12-hour clock) as a decimal number [01,12].

%M replaced with the minute as a decimal number [00,59].

%m replaced with the month as a decimal number [01,12].

%S replaced with the second as a decimal number [00,59].

%y replaced with the year as a 2-digit decimal number [00,99]. You must
interpret the format for an INTERVAL value literally: “88” means
“0088,” not “1988.”

%Y replaced with the year as a 4-digit decimal number; use Y for an
interval of more than 99 years.

%% replaced with % (to allow % in the format string).
3-78 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-INCVASC
One of the codes, listed in the following section and returned in the STATUS
parameter, equals six characters in length (including the minus sign). Thus,
you can correctly identify this code only when you define the STATUS
variable as S9(x), where x>=6.

Return Codes
-1211 Insufficient memory.

-1260 You cannot convert between the specified types.

-1261 The first field of a DATETIME or INTERVAL value contains
too many digits.

-1262 Non-numeric character resides in a DATETIME or
INTERVAL value.

-1263 An incorrect or out of range field resides in a DATETIME
or INTERVAL value.

-1264 Extra characters exist at the end of a DATETIME or
INTERVAL value.

-1265 An overflow occurred on a DATETIME or INTERVAL
operation.

-1266 Incompatible DATETIME or INTERVAL values exist.

-1267 A DATETIME computation result exceeds the allowed
range.

-1268 Invalid DATETIME qualifier.

-1271 Missing decimal point in fraction.

-1272 You did not specify an input buffer.

-1273 The output buffer either cannot hold the result due to
insufficient size or contains a null value.

-1275 Invalid field width for a DATETIME or INTERVAL format
string.

-1276 Unsupported format conversion character.

-1277 Input does not match format specification.

-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.
Working with Time Data Types 3-79

ECO-INCVASC
Example
The two following code fragments convert a string with a specified format to
an ANSI INTERVAL string.

1 *The input and output qualifiers are the same
2 *(day to minute).
3
4 MOVE "20 days, 3 hours, 40 minutes" TO STR.
5 MOVE 28 TO STR-LEN.
6
7 *Note the absence of field-width and precision
8 *specification in the input format string.
9 MOVE "%d days, %H hours, %M minutes" TO FMTSTR.

10 MOVE 29 TO FMTSTR-LEN.
11
12 MOVE 1 TO FLAG.
13 MOVE "DAY TO MINUTE" TO QUAL.
14 MOVE 13 TO QUAL-LEN.
15
16 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, INTVL-QUAL, STAT.
17 IF STAT < 0
18 DISPLAY 'INTVL-QUAL ERROR ', STAT.
19
20 MOVE 50 TO INTVL-LEN.
21
22 *'INTVL' will be set to "20 03:40"
23
24 CALL ECO-INCVASC USING STR, STR-LEN, FMTSTR, FMTSTR-LEN,
25 INTVL, INTVL-LEN, INTVL-QUAL, STAT.
26 IF STAT < 0
27 DISPLAY 'IN-CVASC ERROR ', STAT.
28 *The input and output qualifiers are different
29 *input qual : day to minute
30 *output qual: hour to second
31
32 MOVE "20 days, 3 hours, 40 minutes" TO STR.
33 MOVE 28 TO STR-LEN.
34
35 MOVE "%d days, %H hours, %M minutes" TO FMTSTR.
36 MOVE 29 TO FMTSTR-LEN.
37
38 MOVE 1 TO FLAG.
39
40 *Since the expected number of digits in hours is more than 2,
41 *set the value to some maximum [HOUR(5)].
42 MOVE "HOUR(5) TO SECOND" TO QUAL.
43 MOVE 17 TO QUAL-LEN.
3-80 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-INCVASC
44
45 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, INTVL-QUAL, STAT.
46 IF STAT < 0
47 DISPLAY 'INTVL-QUAL ERROR ', STAT.
48
49 MOVE 50 TO INTVL-LEN.
50
51 *'INTVL' will be set to "483:40:00"
52 *Notice that "20 days and 3 hours" have become "483 hours"
53 *and seconds field has been set to "00".
54
55 CALL ECO-INCVASC USING STR, STR-LEN, FMTSTR, FMTSTR-LEN,
56 INTVL, INTVL-LEN, INTVL-QUAL, STAT.
57 IF STAT < 0
58 DISPLAY 'IN-CVASC ERROR ', STAT.
Working with Time Data Types 3-81

ECO-INTOASC
ECO-INTOASC

Purpose
Use ECO-INTOASC to convert a string in ANSI INTERVAL format to an ASCII
string in the specified localized format.

Syntax
CALL ECO-INTOASC USING INTRVL, INTRVL-LEN, INTRVL-QUAL, FMTSTR,
FMTSTR-LEN, RES, RES-LEN, STATUS.

INTRVL stores the original INTERVAL character string that you
provide

INTRVL-LEN the length that you specify for INTRVL (INTEGER)

INTRVL-QUAL specifies the INTEGER qualifier for INTRVL that the
ECO-IQU routine provides

FMTSTR the address of the format string for the output (RES) that
you provide

FMTSTR-LEN the length that you specify for FMTSTR

RES stores the resulting formatted character-string representa-
tion of the INTERVAL value that ECO-INTOASC returns

RES-LEN the length that you specify for RES

STATUS the error status code that ECO-INTOASC returns

Usage
ECO-INTOASC does not require that you make the output qualifier match the
input qualifier as the format string specifies. When the output qualifier
differs from the input identifier, ECO-INTOASC converts the result to appro-
priate units. However, both the input and the output qualifiers must
represent an interval with a span of year-to-month or day-to-fraction.

If you provide a valid input string and format specification, ECO-INTOASC
sets the output value and returns zero in STATUS. Otherwise, ECO-INTOASC
returns an error code and the output string contains unpredictable results.
3-82 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-INTOASC
If you use an empty FMTSTR argument, ECO-INTOASC returns an error.
Figure 3-9 shows the formatting directives you can use in FMTSTR:

Figure 3-9
Formatting Directives for FMTSTR

Use the %Y directive when the interval exceeds 99 years because %y can
handle only two digits. Use %H for hours, not %I, because %I can handle only
12 hours.

If RES lacks sufficient size to hold the return string, ECO-INTOASC truncates
the return string and returns an error code in STATUS.

One of the codes, listed in the following section and returned in the STATUS
parameter, equals six characters in length (including the minus sign). Thus,
you can correctly identify this code only when you define the STATUS
variable as S9(x), where x>=6.

String Use

%d replaced with the day of the month as a decimal number [01,31].

%Fn replaced with the value of the fraction with precision that the integer n
specifies. The default value of n equals 2; the range of n equals 0 <= n
<= 5.

%H replaced with the hour (24-hour clock) as a decimal number [00,23].

%I replaced with the hour (12-hour clock) as a decimal number [01,12].

%M replaced with the minute as a decimal number [00,59].

%m replaced with the month as a decimal number [01,12].

%S replaced with the second as a decimal number [00,59].

%y replaced with the year as a 2-digit decimal number [00,99]. You must
interpret the format for an INTERVAL value literally: “88”means
“0088,” not “1988.”

%Y replaced with the year as a 4-digit decimal number; use Y for an
interval of more than 99 years.

%% replaced with % (to allow % in the format string).
Working with Time Data Types 3-83

ECO-INTOASC
Return Codes
-1211 Insufficient memory.

-1260 You cannot convert between the specified types.

-1261 The first field of a DATETIME or INTERVAL value contains
too many digits.

-1262 A non-numeric character resides in a DATETIME or
INTERVAL value.

-1263 An incorrect or out of range field resides in a DATETIME
or INTERVAL value.

-1264 Extra characters exist at the end of a DATETIME or
INTERVAL value.

-1265 An overflow occurred on a DATETIME or INTERVAL
operation.

-1266 Incompatible DATETIME or INTERVAL values exist.

-1267 A DATETIME computation result exceeds the allowed
range.

-1268 Invalid DATETIME qualifier.

-1271 Missing decimal point in fraction.

-1272 You did not specify an input buffer.

-1273 The output buffer either cannot hold the result due to
insufficient size or contains a null value.

-1275 Invalid field width for a DATETIME or INTERVAL format
string.

-1276 Unsupported format-conversion character.

-1277 Input does not match format specification.

-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.
3-84 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-INTOASC
Example
The following two code fragments convert a string in ANSI INTERVAL format
to an ASCII string in the specified format.

1 *The input and output qualifiers are the same
2 *(day to minute)
3
4 MOVE "20 03:40" TO INTVL.
5 MOVE 8 TO INTVL-LEN.
6
7 MOVE 1 TO FLAG.
8 MOVE "DAY TO MINUTE" TO QUAL.
9 MOVE 13 TO QUAL-LEN.

10
11 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, INTVL-QUAL, STAT.
12 IF STAT < 0
13 DISPLAY 'INTVL-QUAL ERROR ', STAT.
14
15 MOVE "%1d days, %1H hours and %1M minutes to go" TO FMTSTR.
16 MOVE 41 TO FMTSTR-LEN.
17
18 MOVE 50 TO RES-LEN.
19
20 *'RES' will be set to "20 days, 3 hours and 40 minutes to go"
21
22 CALL ECO-INTOASC USING INTVL, INTVL-LEN, INTVL-QUAL,
23 FMTSTR, FMTSTR-LEN, RES, RES-LEN, STAT.
24 IF STAT < 0
25 DISPLAY 'IN-CVASC ERROR ', STAT.
26 *The input and output qualifiers are different
27 *input qual : day to minute
28 *output qual: hour to second
29
30 MOVE "20 03:40" TO INTVL.
31 MOVE 8 TO INTVL-LEN.
32 MOVE 1 TO FLAG.
33 MOVE "DAY TO MINUTE" TO QUAL.
34 MOVE 13 TO QUAL-LEN.
35
36 CALL ECO-IQU USING FLAG, QUAL, QUAL-LEN, INTVL-QUAL, STAT.
37 IF STAT < 0
38 DISPLAY 'INTVL-QUAL ERROR ', STAT.
39
40 MOVE "%1H hours, %1M minutes and %1S seconds to go" TO
41 FMTSTR.
42 MOVE 44 TO FMTSTR-LEN.
43 MOVE 50 TO RES-LEN.
Working with Time Data Types 3-85

ECO-INTOASC
44 *'RES' will be set to "483 hours 40 minutes and 0 seconds to
45 go"
46 *Notice that "20 days and 3 hours" have become "483 hours" and
47 *the seconds field has been set to zero.
48
49 CALL ECO-INTOASC USING INTVL, INTVL-LEN, INTVL-QUAL,
50 FMTSTR, FMTSTR-LEN, RES, RES-LEN, STAT.
51 IF STAT < 0
52 DISPLAY 'IN-CVASC ERROR ', STAT.
3-86 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-INX
ECO-INX

Purpose
Use ECO-INX to extend an INTERVAL value to a different qualifier.

Syntax
CALL ECO-INX USING INV, INV-LEN, INV-QUAL, INVRES, INVRES-LEN,
INVRES-QUAL, STATUS.

INV the INTERVAL value that you provide

INV-LEN the length that you specify for INV (standard INTEGER)

INV-QUAL the qualifier of INV (standard INTEGER) that the ECO-IQU
routine provides

INVRES the resulting INTERVAL value that ECO-INX returns

INVRES-LEN the length that you specify for INVRES (standard
INTEGER)

INVRES-QUAL the desired qualifier for INVRES (standard INTEGER) that
the ECO-IQU routine provides

STATUS the error status code (standard INTEGER) that ECO-INX
returns

Usage
Make sure you set both the input and output qualifiers to the year-to-month or
day-to-fraction(5) range.

The ECO-INX routine copies the INV fields to INVRES, with the copy
INVRES-QUAL controls.

The ECO-INX routine discards the INV fields that reside to the right of the least
significant field in INVRES.
Working with Time Data Types 3-87

ECO-INX
For fields not in INV, but specified in INVRES-QUAL, the ECO-INX routine
takes the following actions:

■ Uses zeros to fill in fields to the right of the least significant digit

■ Uses valid INTERVAL values to fill in fields to the left of the most-
significant field in INV

Example
The following code fragment from the ECOINX program extends an
INTERVAL value to a different qualifier using the ECO-INX routine. Note that
the output contains zeros in the seconds field, and the days field contains the
number 3.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOINX.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 QTYPE PIC S9(9) COMP-5.
18 77 SQUAL PIC X(30).
19 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
20 77 INV PIC X(30).
21 77 INV-LEN PIC S9(9) COMP-5 VALUE 30.
22 77 INV-QUAL PIC S9(9) COMP-5.
23 77 INVRES PIC X(30).
24 77 INVRES-LEN PIC S9(9) COMP-5 VALUE 30.
25 77 INVRES-QUAL PIC S9(9) COMP-5.
26 77 STAT PIC S9(9) COMP-5 VALUE 30.
27 EXEC SQL END DECLARE SECTION END-EXEC.
28 *
29 PROCEDURE DIVISION.
30 RESIDENT SECTION 1.
31 *
3-88 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-INX
32 *Begin Main routine. Initialize both source and
33 *result qualifiers using the ECO-IQU routine. Extend
34 *an INTERVAL value using the ECO-INX routine. This
35 *creates a resultant value.
36 *
37 MAIN.
38 MOVE 1 TO QTYPE.
39 MOVE "hour to minute" TO SQUAL.
40 CALL ECO-IQU USING QTYPE, SQUAL,
41 SQUAL-LEN, INV-QUAL, STAT.
42 DISPLAY 'INV-QUAL = ', INV-QUAL.
43 MOVE "day to second" TO SQUAL.
44 CALL ECO-IQU USING QTYPE, SQUAL,
45 SQUAL-LEN, INVRES-QUAL, STAT.
46 DISPLAY 'RES-QUAL = ', INVRES-QUAL.
47 *
48 MOVE "75:27" TO INV.
49 DISPLAY 'EXTEND INV FROM "HOUR TO MINUTE" TO
50 "DAY TO SECOND"'.
51 CALL ECO-INX USING INV, INV-LEN, INV-QUAL, INVRES,
52 INVRES-LEN, INVRES-QUAL, STAT.
53 DISPLAY 'INV = ', INV.
54 DISPLAY 'RES = ', INVRES.
55 DISPLAY ' '.
56 STOP RUN.
57 *

Example Output
The output for the preceding code fragment displays two INTEGER qualifiers
from ECO-IQU, and the input and output INTERVAL values from ECO-INX.

INV-QUAL = +0000001128
RES-QUAL = +0000002122
EXTEND INV FROM "HOUR TO MINUTE" TO "DAY TO SECOND"
INV = 75:27
RES = 3 03:27:00
Working with Time Data Types 3-89

ECO-IQU
ECO-IQU

Purpose
Use ECO-IQU to determine the INTEGER qualifier for a given character-string
qualifier.

Syntax
CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, IQUAL, STATUS.

QTYPE the qualifier type (INTEGER) that you provide:

0 = DATETIME

1 = INTERVAL

SQUAL the character-string qualifier that you provide

SQUAL-LEN the length that you specify for SQUAL (INTEGER)

IQUAL the INTEGER qualifier that ECO-IQU returns

STATUS the error status code (INTEGER) that ECO-IQU returns

Return Codes
0 Success.

 -1261 The first field of a DATETIME or INTERVAL value contains
too many digits.

 -1262 A nonnumeric character in DATETIME or INTERVAL
value.

 -1263 An out of range field resides in a DATETIME or INTERVAL
value.

 -1264 Extra characters exist at the end of a DATETIME or
INTERVAL value.

 -1268 Invalid DATETIME qualifier.
3-90 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-IQU
Example
This following code fragment from the ECOIQU program determines the
INTEGER qualifier for a character string for both a DATETIME and an
INTERVAL data type.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOIQU.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
14 77 QTYPE PIC S9(9) COMP-5 VALUE 0.
15 77 SQUAL PIC X(30) VALUE "year to month".
16 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
17 77 IQUAL PIC S9(9) COMP-5.
18 77 STAT-CODE-A PIC S9(9) COMP-5.
19 *
20 77 ZQUAL PIC S9(9) COMP-5.
21 *
22 EXEC SQL END DECLARE SECTION END-EXEC.
23
24
25 PROCEDURE DIVISION.
26 RESIDENT SECTION 1.
27 **
28 MAIN.
29 **
30 DISPLAY 'THIS IS A TEST OF ECO-IQU.'.
31 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, IQUAL,
32 STAT-CODE-A.
33 DISPLAY SQUAL.
34 DISPLAY 'DATETIME QUALIFIER VALUE: 'IQUAL.
35 MOVE 1 TO QTYPE.
36 MOVE "year to month" TO SQUAL.
37 CALL ECO-IQU USING QTYPE, SQUAL, SQUAL-LEN, ZQUAL,
38 STAT-CODE-A.
39 DISPLAY SQUAL.
40 DISPLAY 'INTERVAL QUALIFIER VALUE: 'ZQUAL.
41 DISPLAY ' '.
42 STOP RUN.
Working with Time Data Types 3-91

ECO-IQU
 Example Output
The output for the preceding code fragment displays the year-to-month
qualifier, DATETIME INTEGER qualifier value, year-to-month qualifier, and
INTERVAL INTEGER qualifier value for ECO-IQU.

THIS IS A TEST OF ECO-IQU.
year to month
DATETIME QUALIFIER VALUE: +0000001538
year to month
INTERVAL QUALIFIER VALUE: +0000001538
3-92 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQU
ECO-SQU

Purpose
Use ECO-SQU to determine the character-string qualifier for a given INTEGER
qualifier.

Syntax
CALL ECO-SQU USING QTYPE, IQUAL, SQUAL, SQUAL-LEN, STATUS.

QTYPE the qualifier type (INTEGER) that you provide:

0 = DATETIME

1 = INTERVAL

IQUAL the resultant INTEGER qualifier that ECO-SQU returns

SQUAL the character-string qualifier that the ECO-IQU routine
provides

SQUAL-LEN the length that you specify for SQUAL (INTEGER)

STATUS the error status code (INTEGER) that ECO-SQU returns

Return Codes
= 0 Success.

< 0 Failure.
Working with Time Data Types 3-93

ECO-SQU
Example
The following code fragment from the ECOSQU program tests the ECO-SQU
routine and determines the character-string qualifier when given an integer
qualifier from the routine ECO-IQU.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOSQU.

*
5 ENVIRONMENT DIVISION.
6 CONFIGURATION SECTION.
7 SOURCE-COMPUTER. IFXSUN.
8 OBJECT-COMPUTER. IFXSUN.
9 *

10 DATA DIVISION.
11 WORKING-STORAGE SECTION.
12 *
13 *Declare variables.
14 *
15 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
16 77 QTYPE PIC S9(9) COMP-5 VALUE 1.
17 77 SQUAL PIC X(30).
18 77 SQUAL-LEN PIC S9(9) COMP-5 VALUE 30.
19 77 IQUAL PIC S9(9) COMP-5.
20 77 STAT-CODE PIC S9(9) COMP-5.
21 77 QTYPE-A PIC S9(9) COMP-5 VALUE 1.
22 77 SQUAL-A PIC X(30) VALUE "year to month".
23 77 SQUAL-LEN-A PIC S9(9) COMP-5 VALUE 30.
24 77 IQUAL-A PIC S9(9) COMP-5.
25 77 STAT-CODE-A PIC S9(9) COMP-5.
26 EXEC SQL END DECLARE SECTION END-EXEC.
27 *
28 PROCEDURE DIVISION.
29 RESIDENT SECTION 1.
30 *
31 *Begin Main routine. Use the ECO-IQU routine to initialize
32 *an integer value. Use the ECO-SQU routine to determine the
33 *character string qualifier associated with the integer
34 *qualifier returned by ECO-IQU.
35 *
36 MAIN.
37 CALL ECO-IQU USING QTYPE-A, SQUAL-A, SQUAL-LEN-A,
38 IQUAL-A, STAT-CODE-A.
39 DISPLAY STAT-CODE-A.
40 DISPLAY SQUAL-A.
41 DISPLAY QTYPE-A.
3-94 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQU
42 DISPLAY IQUAL-A.
43 *
44 DISPLAY 'THIS IS A TEST OF ECO-SQU.'.
45 MOVE IQUAL-A TO IQUAL.
46 CALL ECO-SQU USING QTYPE, IQUAL, SQUAL,
47 SQUAL-LEN, STAT-CODE.
48 DISPLAY STAT-CODE.
49 DISPLAY SQUAL.
50 DISPLAY QTYPE.
51 DISPLAY IQUAL.
52 STOP RUN.
53 *

Example Output
The output for the preceding code fragment displays the status, year-to-month
qualifier, INTERVAL qualifier type, and INTERVAL INTEGER qualifier for ECO-
IQU, plus the status, year-to-month qualifier, INTERVAL qualifier type, and
INTERVAL INTEGER qualifier for ECO-SQU.

INITIALIZE INTEGER VALUE IN ECO-IQU.
+0000000000
year to month
+0000000001
+0000001538
THIS IS A TEST OF ECO-SQU.
+0000000000
year to month
+0000000001
+0000001538
Working with Time Data Types 3-95

4
Chapter
Error Handling
Obtaining Diagnostic Information After an SQL Statement Executes . . 4-4

The GET DIAGNOSTICS Statement 4-4
Statement Information 4-4
Exception Information 4-5
Examples Illustrating the GET DIAGNOSTICS Statement 4-7
Using the SQLSTATE Variable 4-9

Class and Subclass Codes 4-9
List of SQLSTATE Codes 4-11
Using SQLSTATE in Applications 4-14

Multiple Error Conditions 4-16

The SQLCA Record. 4-17
The Contents of the SQLCA Structure 4-19
Using SQLCODE OF SQLCA 4-21

Codes for SQL Statement Results 4-21
Success . 4-22
Success with Warning 4-22
No Data Found 4-22

SQLSTATE Class Code = 02 4-22
SQLCODE OF SQLCA = 100 4-23

Error . 4-24
Errors After a PREPARE Statement 4-24
Errors After an EXECUTE Statement 4-24
When an Error Occurs on GET DIAGNOSTICS 4-25

4-2 INFO
Error Handling in Programs 4-25
Checking for Errors with the GET DIAGNOSTICS Statement . . . 4-25
Checking for an Error Using In-Line Code 4-26
Automatically Checking for Errors Using the WHENEVER

Statement 4-29
Checking for Warnings Using GET DIAGNOSTICS 4-35
Checking for Warnings Using the SQLWARN OF SQLCA

Structure . 4-38
ECO-MSG. 4-41

A Program That Uses Full Error Checking 4-45
RMIX-ESQL/COBOL Programmer’s Manual

roper database management requires that all logical sequences of
statements that modify the database continue successfully until completion.
For example, when you update a customer account to show a reduction of
$100 in the payable balance and, for some reason, the next step (to update the
cash balance) fails, your books are out of balance. Make sure you check that
every SQL statement executes correctly.

This chapter discusses how to use the following diagnostic and error-
handling structures:

■ GET DIAGNOSTICS statement

You can use the GET DIAGNOSTICS statement to diagnose ANSI ISO
and X/Open standard run-time errors in your ESQL/COBOL program.
The Informix Guide to SQL: Syntax describes the structure, contents,
and syntax of GET DIAGNOSTICS.

■ SQLSTATE variable

GET DIAGNOSTICS uses the SQLSTATE variable to check for errors.
Refer to “The GET DIAGNOSTICS Statement” on page 4-4 for a
description of the SQLSTATE variable.

■ SQLCA record

You can use the SQLCA record to check for Informix proprietary run-
time errors in your ESQL/COBOL program. Refer to “The SQLCA
Record” on page 4-17 for a description of the SQLCA structure.

■ ECO-MSG routine

You can use the ECO-MSG routine to retrieve the message text
associated with a specific Informix error number. Refer to “ECO-
MSG” on page 4-41 for a description of the syntax and usage of
ECO-MSG.

P

Error Handling 4-3

Obtaining Diagnostic Information After an SQL Statement Executes
Obtaining Diagnostic Information After an SQL
Statement Executes
After you execute an SQL statement in an ESQL/COBOL program, you can
obtain diagnostic information about the outcome from the GET
DIAGNOSTICS statement and the SQLCA structure.

The GET DIAGNOSTICS Statement
You use the GET DIAGNOSTICS statement to diagnose error messages. After
you execute an SQL statement, the database server returns a status code about
that statement and stores that code in a variable called SQLSTATE. The
SQLSTATE status code describes the result (or primary exception code) of the
most recently executed SQL statement. You use a GET DIAGNOSTICS
statement to retrieve specific diagnostic information about the SQLSTATE
status code from the diagnostics area.

Tip: If you execute a SQL statement that generates an Informix SQLSTATE IX000
reserved error message value, you can use the GET DIAGNOSTICS statement to
diagnose that error message code. The GET DIAGNOSTICS statement provides the
SQLSTATE, SQLCODE, or ISAM error message text associated with that error code.

The GET DIAGNOSTICS statement returns statement and exception infor-
mation

Statement Information
The statement information GET DIAGNOSTICS returns includes the fields
described in Figure 4-1.
4-4 INFORMIX-ESQL/COBOL Programmer’s Manual

Exception Information
Figure 4-1
Statement-Information Fields

Exception Information
The exception information that GET DIAGNOSTICS returns includes the fields
described in Figure 4-2.

Figure 4-2
Exception-Information Fields

Field Description

NUMBER contains the number of exceptions that occurred on the
statement.

MORE contains the character Y for yes or N for no. Y means that
the diagnostic area detected more exceptions than it stored.
N means that the diagnostic area stored all the available ex-
ception information. However, an Informix Version 6.0 or
7.1 database server always returns N.

ROW_COUNT contains the number of rows inserted, updated, or deleted
when you use an INSERT, UPDATE, or DELETE SQL
statement. For any other SQL statement, the value of
ROW_COUNT remains undefined.

Field Description

RETURNED_SQLSTATE contains a character string of length 5, which holds the SQL-
STATE value describing the current exception.

CLASS_ORIGIN contains a variable-length character string with a
maximum length of 254, which identifies the class portion
of SQLSTATE as either defined by Informix or the Interna-
tional Standards Organization (ISO). When ISO defines the
class, the value of CLASS_ORIGIN equals 'ISO 9075'.

SUBCLASS_ORIGIN contains a variable-length character string with a maxi-
mum length of 254, which identifies the subclass portion of
SQLSTATE as either defined by Informix or the ISO. When
ISO defines the subclass, the value of SUBCLASS_ORIGIN
equals 'ISO 9075'.

 (1 of 2)
Error Handling 4-5

Exception Information
Warning: You cannot prepare the GET DIAGNOSTICS statement at run time.

MESSAGE_TEXT contains a variable-length character string with a
maximum length of 254, which contains the Informix
message text describing the error condition.
MESSAGE_TEXT can exist a zero-length string. This field
also contains message text for any ISAM exceptions.

MESSAGE_LENGTH contains an exact numeric value with scale 0 that repre-
sents the length of the MESSAGE_TEXT string.

SERVER_NAME contains a character string of maximum length 254, which
holds the name of the database server of the current
connection. You can make the current connection an explic-
it connection (established with the CONNECT statement) or
an implicit connection (established with the DATABASE,
CREATE DATABASE, or START DATABASE statements).
When no current connection exists, SERVER_NAME remains
blank. When your current connection specifies the default
database server (the database server that the
INFORMIXSERVER environment variable specifies), this
field also remains blank. When an application issues a
DISCONNECT ALL statement and a connection fails to
disconnect, this field holds the name of the database server
for the connection that failed to disconnect. In addition,
SERVER_NAME matches the server name found in the
sqlhosts file.

CONNECTION_NAME contains a variable-length character string with a maxi-
mum length of 254, which holds the connection_name of the
current connection. When no current connection exists, the
CONNECTION_NAME field remains blank. When the appli-
cation does not specify a connection_name in the CONNECT
statement, or when the application makes an implicit con-
nection (a connection not established with the CONNECT
statement), the CONNECTION_NAME field remains blank.
When an application issues a DISCONNECT ALL and one of
the connections fails to disconnect, the
CONNECTION_NAME field holds the connection_name of the
connection that failed to disconnect.

Field Description

 (2 of 2)
4-6 INFORMIX-ESQL/COBOL Programmer’s Manual

Examples Illustrating the GET DIAGNOSTICS Statement
Examples Illustrating the GET DIAGNOSTICS Statement
The following program illustrates how to use a GET DIAGNOSTICS statement
to retrieve statement information about an SQL statement. That example
shows how to obtain the number of exceptions and whether the GET
DIAGNOSTICS statement detects more exceptions than it stores.

1 *
2 *This program, DIAG1, shows how the
3 *GET DIAGNOSTICS statement
4 *retrieves statement information.
5 *
6 IDENTIFICATION DIVISION.
7 PROGRAM-ID.
8 DIAG1.
9 *

10 ENVIRONMENT DIVISION.
11 CONFIGURATION SECTION.
12 SOURCE-COMPUTER. IFXSUN.
13 OBJECT-COMPUTER. IFXSUN.
14 *
15 DATA DIVISION.
16 WORKING-STORAGE SECTION.
17 *
18 *Declare variables.
19 *
20 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
21 77 OVERF PIC X(1).
22 77 EXCEPTION-COUNT PIC S9(9) COMP-5.
23 EXEC SQL END DECLARE SECTION END-EXEC.
24 *
25 PROCEDURE DIVISION.
26 RESIDENT SECTION 1.
27 *
28 *Begin Main routine. Execute an SQL statement.
29 *Determine exceptions with GET DIAGNOSTICS.
30 *Display the exception information.
31 *
32 MAIN.
33 EXEC SQL CONNECT TO 'stores7' END-EXEC.
34 EXEC SQL GET DIAGNOSTICS :OVERF=MORE,
35 :EXCEPTION-COUNT=NUMBER END-EXEC.
36 DISPLAY 'MORE EXCEPTIONS DETECTED?: ', OVERF.
37 DISPLAY 'NUMBER OF EXCEPTIONS IS: ', EXCEPTION-COUNT.
38 EXEC SQL DISCONNECT CURRENT END-EXEC.
39 STOP RUN.
40 *
Error Handling 4-7

Examples Illustrating the GET DIAGNOSTICS Statement
The following program illustrates how to use a GET DIAGNOSTICS statement
to retrieve exception information about an SQL statement. This example
shows how to obtain the SQLSTATE status value, the class origin, the subclass
origin, the error message, and the length of the error message.

1 *
2 *This program, DIAG2, shows how
3 *the GET DIAGNOSTICS statement
4 *retrieves exception information.
5 *
6 IDENTIFICATION DIVISION.
7 PROGRAM-ID.
8 DIAG2.
9 *

10 ENVIRONMENT DIVISION.
11 CONFIGURATION SECTION.
12 SOURCE-COMPUTER. IFXSUN.
13 OBJECT-COMPUTER. IFXSUN.
14 *
15 DATA DIVISION.
16 WORKING-STORAGE SECTION.
17 *
18 *Declare variables.
19 *
20 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
21 77 EXCEPTION-COUNT PIC S9(9) COMP-5.
22 77 COUNT-EX PIC S9(9) VALUE 1 COMP-5.
23 77 SQLSTATE PIC X(5).
24 77 CLASS-ORIGIN PIC X(254).
25 77 SUBCLASS-ORIGIN PIC X(254).
26 77 ERROR-MESS PIC X(254).
27 77 MESS-LEN PIC S9(9) COMP-5.
28 EXEC SQL END DECLARE SECTION END-EXEC.
29 *
30 PROCEDURE DIVISION.
31 RESIDENT SECTION 1.
32 *
33 *Begin Main routine. Execute an SQL statement.
34 *Determine number of exceptions and pass
35 *control to ERR-CHK subroutine to diagnose each
36 *exception.
37 *
38 MAIN.
39 EXEC SQL CONNECT TO 'stores7' END-EXEC.
40 EXEC SQL GET DIAGNOSTICS
41 :EXCEPTION-COUNT=NUMBER END-EXEC.
42 DISPLAY 'NUMBER OF EXCEPTIONS IS: ', EXCEPTION-COUNT.
43 PERFORM ERR-CHK UNTIL COUNT-EX IS GREATER THAN
4-8 INFORMIX-ESQL/COBOL Programmer’s Manual

Using the SQLSTATE Variable
44 EXCEPTION-COUNT.
45 EXEC SQL DISCONNECT CURRENT END-EXEC.
46 STOP RUN.
47 *
48 *Subroutine to diagnose each exception generated by the
49 *execution of an SQL CONNECT TO statement. Display the
50 *diagnostic information.
51 *
52 ERR-CHK.
53 EXEC SQL GET DIAGNOSTICS EXCEPTION :COUNT-EX
54 :SQLSTATE=RETURNED_SQLSTATE,
55 :CLASS-ORIGIN=CLASS_ORIGIN,
56 :SUBCLASS-ORIGIN=SUBCLASS_ORIGIN,
57 :ERROR-MESS=MESSAGE_TEXT,
58 :MESS-LEN=MESSAGE_LENGTH
59 END-EXEC.
60 DISPLAY '**********************************'.
61 DISPLAY 'THE SQLSTATE VALUE IS: ', SQLSTATE.
62 DISPLAY 'THE CLASS CODE ORIGIN IS: ', CLASS-ORIGIN.
63 DISPLAY 'THE SUBCLASS CODE ORIGIN IS: ', SUBCLASS-ORIGIN.
64 DISPLAY 'THE ERROR MESSAGE IS: ', ERROR-MESS.
65 DISPLAY 'THE ERROR MESSAGE LENGTH IS: ', MESS-LEN.
66 ADD 1 TO COUNT-EX.
67 *

Using the SQLSTATE Variable
When an SQL statement executes, your ESQL/COBOL program automatically
generates an error status code that represents success, failure, warning, or no
data found. Your program stores this error status code in a variable called
SQLSTATE.

Class and Subclass Codes

The SQLSTATE status code, a five-character string, contains only the
following elements:

■ Digits

■ Capital letters
Error Handling 4-9

Using the SQLSTATE Variable
The first two characters of SQLSTATE indicate a class. The last three characters
of SQLSTATE indicate a subclass. Figure 4-3 shows the structure of the
SQLSTATE code using the value 08001, where 08 represents the class code and
001 represents the subclass code. The value 08001 represents the following
error:

Unable to connect with database environment.

The SQLSTATE class code represents a unique category of error status condi-
tions, but the subclass code does not. The meaning of the subclass code
depends on the accompanying class code. The initial character of the class
code indicates the following source of the SQLSTATE value:

■ Class codes that begin with a digit in the range 0-4, or a capital letter
in the range A-H, indicate that X/Open defines the result code. In this
case, the associated subclass codes also begin in the range 0-4 or A-H.

■ Class codes that begin with the letters IX indicate error or warning
conditions only Informix uses. Informix uses codes starting with IX
to support any existing warning or error messages that X/Open does
not support. Other class codes that begin with a digit in the range
5-9, or a capital letter in the range I-Z, indicate currently undefined
conditions.

Informix designates a class code of IX for the Informix error or warning
messages that the X/Open reserved range does not support. The subclass
code varies depending on the error.

Figure 4-3
The Structure of the

SQLSTATE Code

CLASS
CODE

SUBCLASS
CODE

0 8 0 0 1
4-10 INFORMIX-ESQL/COBOL Programmer’s Manual

Using the SQLSTATE Variable
List of SQLSTATE Codes

Figure 4-4 describes the class codes, subclass codes, and the meaning of all
valid warning and error codes associated with the SQLSTATE error status
code.

Figure 4-4
Class and Subclass Codes for SQLSTATE

Class Subclass Meaning

00 000 Success

01

01

01

01

01

01

000

002

003

004

005

006

Success with Warning

Disconnect error; transaction rolled back

Null value eliminated in set function

String data, right truncation

Insufficient item descriptor areas

Privilege not revoked

01

01

01

01

01

01

01

01

01

01

01

I00

I01

I03

I04

I05

I06

I07

I08

I09

I10

I11

Non-X/Open warning (‘I’ stands for Informix)

Database has transactions

ANSI-compliant database selected

Informix OnLine database selected

Float to decimal conversion has been used

Informix extension to an ANSI-compliant standard syntax

UPDATE/DELETE statement lacks a WHERE clause

An ANSI keyword has been used as a cursor name

The number of items in the select-list does not equal to the
number in the into-list

Database server running in secondary mode

Dataskip is turned on

02 000 No data found

 (1 of 4)
Error Handling 4-11

Using the SQLSTATE Variable
07

07

07

07

07

07

07

07

07

000

001

002

003

004

005

006

008

009

Dynamic SQL error

Using clause does not match dynamic parameters

Using clause does not match target specifications

Cannot execute cursor specification

Dynamic parameters require a USING clause

Prepared statement is not a cursor specification

Restricted data type attribute violation

Invalid descriptor count

Invalid descriptor index

08

08

08

08

08

08

08

08

000

001

002

003

004

006

007

S01

Connection exception

Database server rejected the connection

Connection name in use

Connection does not exist

Client unable to establish connection

Transaction rolled back

Transaction state unknown

Communication failure

0A

0A

000

001

Feature not supported

Multiple server transactions

2B 000 Dependent privilege descriptors still exist

21

21

21

000

S01

S02

Cardinality violation
Insert value list does not match column list

Degree of derived table does not match column list

Class Subclass Meaning

 (2 of 4)
4-12 INFORMIX-ESQL/COBOL Programmer’s Manual

Using the SQLSTATE Variable
22

22

22

22

22

22

22

22

22

22

000

001

002

003

005

012

019

024

025

027

Data exception

String data, right truncation

Null value, no indicator parameter

Numeric value out of range

Error in assignment

Division by zero

Invalid escape character

Unterminated string

Invalid escape sequence

Data exception trim error

23 000 Integrity constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

2D 000 Invalid transaction termination

26 000 Invalid SQL statement identifier

2E 000 Invalid connection name

28 000 Invalid user-authorization specification

33 000 Invalid SQL descriptor name

34 000 Invalid cursor name

35 000 Invalid exception number

37 000 Syntax error or access violation in PREPARE or EXECUTE
IMMEDIATE

3C 000 Duplicate cursor name

40

40

000

003

Transaction rollback

Statement completion unknown

42 000 Syntax error or access violation

Class Subclass Meaning

 (3 of 4)
Error Handling 4-13

Using the SQLSTATE Variable
Using SQLSTATE in Applications

You can use a variable, called SQLSTATE, that ESQL/COBOL does not require
you to declare in your program. SQLSTATE contains the error code, essential
for error handling, generated every time your program executes an SQL
statement. The SQLSTATE variable exists whether or not you choose to
declare it. When you do not declare SQLSTATE explicitly in your program,
that program automatically and implicitly declares a variable called
SQLSTATE. When you declare the SQLSTATE variable in WORKING-STORAGE,
you must use the following code to retrieve the SQLSTATE status value:

SQL EXEC
GET DIAGNOSTICS EXCEPTION 1
:SQLSTATE=RETURNED_SQLSTATE

END-EXEC.

In this example, RETURNED_SQLSTATE contains the SQLSTATE error status
code. Your ESQL/COBOL program does not need to declare an SQLSTATE
variable and then store a status value in that variable using the preceding
code. Your program can use an automatically declared SQLSTATE variable
that already contains the status code associated with the most recently
executed SQL statement. For example, when you do not declare an SQLSTATE
variable, and you execute an SQL statement, you can immediately check the
SQLSTATE value for that statement using the following COBOL statement:

DISPLAY ‘THE SQLSTATE VALUE IS: ‘, SQLSTATE.

The preceding statement displays the contents of the automatically declared
SQLSTATE variable even though you did not declare it.

S0

S0

S0

S0

S0

000

001

002

011

021

Invalid name

Base table or view table already exists

Base table not found

Index already exists

Column already exists

S1 001 Memory-allocation failure

IX 000 Informix reserved error message

Class Subclass Meaning

 (4 of 4)
4-14 INFORMIX-ESQL/COBOL Programmer’s Manual

Using the SQLSTATE Variable
You can examine the SQLSTATE variable to determine whether an SQL
statement was successful. When the SQLSTATE variable indicates that the
statement failed, you can execute a GET DIAGNOSTICS statement to obtain
additional error information.

As an alternative to using the automatically generated SQLSTATE variable,
you can declare a host variable within your application to receive the
RETURNED_SQLSTATE value. The value in the RETURNED_SQLSTATE field of
the GET DIAGNOSTICS statement provides the error code essential for error
handling. You can assign this host variable any valid name you wish,
including the name SQLSTATE. When you declare a host variable, however,
you must explicitly issue the GET DIAGNOSTICS statement after each SQL
statement that you wish to check for exceptions.

To declare an SQLSTATE variable within your application, use the following
syntax:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
77 SQLSTATE PIC X(5).
EXEC SQL END DECLARE SECTION END-EXEC.

For an example of how to declare and use an SQLSTATE variable in a
program, refer to “Multiple Error Conditions” on page 4-16.
Error Handling 4-15

Multiple Error Conditions
Multiple Error Conditions
When multiple exceptions point to the same SQL statement, you can diagnose
each exception. The following program shows how to use the GET
DIAGNOSTICS statement to diagnose multiple exceptions:

1 *
2 *This program, MULTEX, executes an SQL CONNECT
3 *statement that attempts to connect to a database
4 *that does not exist. When an error occurs,
5 *the WHENEVER statement passes control
6 *to error checking subroutine.
7 *
8 IDENTIFICATION DIVISION.
9 PROGRAM-ID.

10 MULTEX.
11 *
12 ENVIRONMENT DIVISION.
13 CONFIGURATION SECTION.
14 SOURCE-COMPUTER. IFXSUN.
15 OBJECT-COMPUTER. IFXSUN.
16 *
17 DATA DIVISION.
18 WORKING-STORAGE SECTION.
19 *
20 *Declare variables.
21 *
22 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
23 77 NUM-OF-EXCEPTIONS PIC S9(9) COMP-5.
24 77 SQLSTATE-VALUE PIC X(5).
25 77 CLASS-ID PIC X(254).
26 77 SUBCLASS-ID PIC X(254).
27 77 EXPLAIN-EXCEPTION PIC X(254).
28 77 MESSAGE-TEXT-LENGTH PIC S9(3) COMP-5.
29 77 INT-VAL PIC S9(3) VALUE 1 COMP-5.
30 EXEC SQL END DECLARE SECTION END-EXEC.
31 *
32 PROCEDURE DIVISION.
33 RESIDENT SECTION 1.
34 *
35 *Begin Main routine. Main routine attempts connection
36 *to database that does not exist. SQL error occurs.
37 *Whenever statement transfers control to 100-DO-ERROR
38 *subroutine.
39 *
40 MAIN.
41 EXEC SQL WHENEVER SQLERROR GOTO 100-DO-ERROR END-EXEC.
42 DISPLAY 'THIS IS A TEST OF MULTEX'.
43 DISPLAY ' '.
44 EXEC SQL CONNECT TO 'nonexistent' END-EXEC.
45 DISPLAY 'THE SQLSTATE VALUE IS ' SQLSTATE.
46 EXEC SQL DISCONNECT ALL END-EXEC.
47 STOP RUN.
4-16 INFORMIX-ESQL/COBOL Programmer’s Manual

The SQLCA Record
48 *
49 *Subroutine to determine and display number of exceptions generated
50 *by SQL CONNECT TO statement. 100-DO-ERROR passes control to the
51 *101-GET-DIAG subroutine.
52 *
53 100-DO-ERROR.
54 EXEC SQL GET DIAGNOSTICS :NUM-OF-EXCEPTIONS=NUMBER END-EXEC.
55 DISPLAY 'NUMBER OF EXCEPTIONS IS ' NUM-OF-EXCEPTIONS.
56 PERFORM 101-DO-GET-DIAG
57 UNTIL INT-VAL IS GREATER THAN NUM-OF-EXCEPTIONS.
58 *
59 *Subroutine to diagnose each exception. Obtain and display
60 *diagnostic information.
61 *
62 101-DO-GET-DIAG.
63 EXEC SQL GET DIAGNOSTICS EXCEPTION :INT-VAL
64 :SQLSTATE-VALUE=RETURNED_SQLSTATE,
65 :CLASS-ID=CLASS_ORIGIN,
66 :SUBCLASS-ID=SUBCLASS_ORIGIN,
67 :EXPLAIN-EXCEPTION=MESSAGE_TEXT,
68 :MESSAGE-TEXT-LENGTH=MESSAGE_LENGTH END-EXEC.
69 DISPLAY 'THE SQLSTATE VALUE IS ' SQLSTATE-VALUE.
70 DISPLAY 'THE CLASS IS ' CLASS-ID.
71 DISPLAY 'THE SUBCLASS IS ' SUBCLASS-ID.
72 DISPLAY 'THE ERROR MESSAGE IS ' EXPLAIN-EXCEPTION.
73 DISPLAY 'THE MESSAGE LENGTH IS ' MESSAGE-TEXT-LENGTH.
74 ADD 1 TO INT-VAL.
75 *

The SQLCA Record
After each SQL statement executes, the database server returns to the SQLCA
record error status information and other information relevant to perfor-
mance or to the nature of the data handled. For some statements, the
database server returns warnings rather than error information. You can take
advantage of this information in your ESQL/COBOL program.

ESQL/COBOL automatically includes the SQLCA record in each program.
These records vary depending on the COBOL compiler.

Figure 4-5 shows the SQLCA record for RM/COBOL-85 compiler.
Error Handling 4-17

The SQLCA Record
Figure 4-6 shows the SQLCA record for MF COBOL/2 compiler.

The following tables listed in “The Contents of the SQLCA Structure,”
starting on page 4-19, illustrate the principal fields of the SQLCA record.

Figure 4-5
The SQLCA Record

for Ryan_McFarland
Compilers

77 SQLNOTFOUND PIC S9(10) VALUE 100.
01 SQLCA.

05 SQLCODE PIC S9(5) COMPUTATIONAL-4.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMPUTATIONAL-4.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(5) COMPUTATIONAL-4.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).

Figure 4-6
The SQLCA Record

for Micro Focus
Compilers

77 SQLNOTFOUND PIC S9(10) VALUE 100.
01 SQLCA.

05 SQLCODE PIC S9(9) COMPUTATIONAL-5.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMPUTATIONAL-5.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMPUTATIONAL-5.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).
4-18 INFORMIX-ESQL/COBOL Programmer’s Manual

The Contents of the SQLCA Structure
The Contents of the SQLCA Structure

Following successful prepare of a SELECT, UPDATE,
INSERT, or DELETE statement, or after opening a
select cursor, this field contains the estimated
number of rows affected.

When SQLCODE contains an error code, this field
contains either zero or an additional error code,
called the ISAM error code, that explains the origin of
the main error.

Following a successful insert operation of a single
row, this field contains the value of a generated serial
number for that row.

Following a successful, multirow insert, update, or
delete operation, this field contains the count of rows
processed.

Following a multirow insert, update, or delete
operation that ends with an error, this field contains
the count of rows successfully processed before the
error was detected.

Following successful prepare of a SELECT, UPDATE,
INSERT, or DELETE statement, or after a select cursor
has been opened, this field contains the estimated
weighted sum of disk accesses and total rows

array of 6
integers

SQLERRD[1]

SQLERRD[2]

SQLERRD[3]

SQLERRD[4]

SQLERRD[5]

SQLERRD[6]

SQLERRD

Success.

No more data/not found.

Error code.

integer

0

100

negative

SQLCODE

Internal use only.

character
(8) SQLERRP
Error Handling 4-19

The Contents of the SQLCA Structure
All Other Operations:

Set to W when a program sets any other field to W.

Set to W when a program truncates a column value
while fetching that value into a host variable or
when REVOKE ALL does not revoke all seven table-
level privileges.

Set to W when an aggregate function encounters a
null value.

On a select or on opening a cursor, set to W when the
number of items in the select list does not equal the
number of host variables given in the INTO clause to
receive them. Set to W when GRANT ALL does not
grant all seven table-level privileges.

Set to W when a described DELETE or UPDATE
statement lacks a WHERE clause. That statement,
when executed, affects all rows of the table.

When Opening a Database:

Set to W when a program sets any field to W. When
SQLWARN0 remains blank, you do not need to check
the other fields.

Set to W when the database now open uses a
transaction log.

Set to W when the program opens an ANSI-
compliant database.

Set to W when using an OnLine database server.

Set to W when the database server stores the FLOAT
data type in DECIMAL form (done when the host
system lacks support for FLOAT types).

Not used.

Set to W when the application connects to an OnLine

array of 8
characters

SQLWARN0

SQLWARN1

SQLWARN2

SQLWARN3

SQLWARN4

SQLWARN5

SQLWARN6

SQLWARN7

SQLWARN

SQLWARN0

SQLWARN1

SQLWARN2

SQLWARN3

SQLWARN4

SQLWARN5

SQLWARN6

SQLWARN7

Contains the error message parameter. SQLERRM
does not contain a full error message, just the
parameter found within an error message. When an

character SQLERRM
4-20 INFORMIX-ESQL/COBOL Programmer’s Manual

Using SQLCODE OF SQLCA
Using SQLCODE OF SQLCA
Although the SQLCODE OF SQLCA value can return error values, Informix
recommends that you use the SQLSTATE value for the following reasons:

■ SQLSTATE complies with ANSI standards.

■ You can use SQLSTATE, in association with GET DIAGNOSTICS, to
return more detailed diagnostic information than SQLCODE OF
SQLCA provides.

ESQL/COBOL defines the global variable SQLCODE as a long integer.
Whenever the database server returns a value to SQLCODE OF SQLCA, your
ESQL/COBOL program copies that value into SQLCODE. You can use
SQLCODE in your INFORMIX-ESQL/COBOL program in place of SQLCODE OF
SQLCA for readability and brevity.

Codes for SQL Statement Results
The database server returns the following two types of result codes after
executing every SQL statement:

■ SQLSTATE

■ SQLCODE OF SQLCA

Figure 4-7 illustrates the outcomes and values of the preceding codes.

Figure 4-7
SQLSTATE Values and

Related SQLCODE Values

Outcome SQLSTATE Class Code Value SQLCODE OF SQLCA Value

Success SQLSTATE = 00 SQLCODE OF SQLCA = 0

Success with warning SQLSTATE = 01 SQLCODE OF SQLCA
=SQLWARN

No data found
or end of data

SQLSTATE = 02 SQLCODE OF SQLCA =
SQLNOTFOUND (or 100)

Error SQLSTATE > 02 SQLCODE OF SQLCA < 0
Error Handling 4-21

Success
Success
If the SQL statement executes successfully, the database server returns an
SQLSTATE class field equal to 00. The GET DIAGNOSTICS statement can use
the SQLSTATE value to return other information about the SQL statement. In
addition, the database server can return information to the SQLCA record. For
information about the other fields in the SQLCA record, refer to “Checking for
Warnings Using the SQLWARN OF SQLCA Structure” on page 4-38 and the
description of the SQLCA record in “The SQLCA Record” on page 4-17.

Success with Warning
If the SQL statement executes successfully but generates warning conditions,
the database server returns an SQLSTATE class field = 01. The GET
DIAGNOSTICS statement can use the SQLSTATE value to return specific
warning information. In addition, the database server can return warning
information to the SQLWARN component of the SQLCA record.

No Data Found
After an SQL statement executes, you can receive a message code informing
you that no data was found or the end of data has occurred. No Data Found
or End of Data occurs in the following situations:

■ A FETCH statement fetches no row. The implicit movement of the
cursor failed because the cursor was already at the end of the set.

■ A SELECT statement attempts to retrieve data from a table that has no
rows.

■ An unsatisfied condition (specified in an INSERT, searched DELETE,
or searched UPDATE statement) exists.

SQLSTATE Class Code = 02

The SQLSTATE class field can contain a value of 02. The class field value 02
indicates that your program retrieves no more rows. The SQLSTATE No Data
Found result means that the statement executed successfully but no rows
satisfy the conditions of the SQL statement.
4-22 INFORMIX-ESQL/COBOL Programmer’s Manual

No Data Found
SQLCODE OF SQLCA = 100

After a fetch, SQLCODE of SQLCA can contain the value 100. The value 100
indicates that your program retrieves no more rows. The FETCH statement
provides a special case with respect to SQLCA error handling. After a fetch,
SQLCODE OF SQLCA can contain the values 0, 100, or a negative value. The
zero and negative values indicate success and failure, respectively, as they do
after the execution of other statements. The value 100 indicates that your
program retrieves no more rows. For readability, ESQL/COBOL defines the
value 100 as SQLNOTFOUND. When you check for SQLCODE OF SQLCA =
SQLNOTFOUND, you can write code to process the results of queries only
when the database server returns rows.

In an ANSI-compliant database, when any of the following statements fails to
access any rows, the database server sets SQLCODE OF SQLCA equal to 100:

■ INSERT INTO table-name SELECT ... WHERE ...

■ SELECT INTO TEMP ... WHERE ...

■ DELETE ... WHERE ...

■ UPDATE ... WHERE ...

If a PREPARE statement contains multiple statements with a WHERE clause
that does not return any rows, the database server sets SQLCODE OF SQLCA
equal to 100 for the four statements shown in the preceding list. This occurs
whether your program accesses ANSI or non-ANSI databases.

In the following example, the INSERT statement inserts into the hot_items
table any stock item ordered in a quantity greater than 10,000. When no order
exists for items in that great a quantity, the SELECT part of the statement fails
to insert any rows. The database server returns SQLNOTFOUND (100) in an
ANSI-compliant database, or 0 in a non ANSI-compliant database.

EXEC SQL
INSERT INTO HOT_ITEMS
SELECT DISTINCT STOCK.STOCK_NUM,

STOCK.MANU_CODE,DESCRIPTION
FROM ITEMS, STOCK
WHERE STOCK.STOCK_NUM = ITEMS.STOCK_NUM

AND STOCK.MANU_CODE = ITEMS.MANU_CODE
AND QUANTITY > 10000

END-EXEC.
Error Handling 4-23

Error
The following example of an UPDATE statement fails to update any rows
when a manufacturer with the manu_code SWK does not exist. The database
server returns SQLNOTFOUND (100) in an ANSI-compliant database, or 0 in
a database that is not ANSI-compliant.

EXEC SQL
UPDATE STOCK
SET UNIT_PRICE = UNIT_PRICE * 1.05
WHERE MANU_CODE = 'SWK'

END-EXEC.

Error
If the SQL statement does not execute correctly, the database server sets the
SQLSTATE class field value greater than 02 and SQLCODE of SQLCA to a
negative value. The database server can also set other fields in the SQLCA
record, and returns an ISAM error in the diagnostic area.

Errors After a PREPARE Statement

Usually, when a PREPARE statement fails with SQLCODE < 0, a syntax error
occurred in the prepared text. When a PREPARE statement fails, the
SQLCA.SQLERRD[5] variable captures the offset into the text where the error
occurs. Your program can use the value in SQLCA.SQLERRD[5] to indicate the
approximate location of the incorrect syntax in the dynamically prepared
text. ESQL/COBOL ignores spaces and tabs because they are condensed.
When you use PREPARE with several statements, ESQL/COBOL returns the
error status on the first error in the text, even when several errors occur.

Errors After an EXECUTE Statement

If an EXECUTE statement fails with SQLCODE < 0, a statement inside the
prepared text failed. The SQLCODE variable holds the error that the database
server returned from the failed statement. When SQLCODE equals 0 after the
completion of an EXECUTE statement, the prepared statement (or multiple
prepared statements) succeeded.
4-24 INFORMIX-ESQL/COBOL Programmer’s Manual

Error Handling in Programs
When an Error Occurs on GET DIAGNOSTICS

If an error occurs for the GET DIAGNOSTICS statement, ESQL/COBOL sets
SQLCODE to the value of the exception number that generated the error.
However, SQLSTATE and the values of all other fields that GET DIAGNOSTICS
returns remain undefined.

Error Handling in Programs
This section describes how to check for errors and warnings in programs. You
can check for errors using the GET DIAGNOSTICS statement, in-line code, and
the WHENEVER statement. You can check for warnings using the GET
DIAGNOSTICS statement or the SQLWARN of SQLCA structure.

Checking for Errors with the GET DIAGNOSTICS Statement
For information about checking for errors using the GET DIAGNOSTICS
statement, refer to “The GET DIAGNOSTICS Statement” on page 4-4.
Error Handling 4-25

Checking for an Error Using In-Line Code
Checking for an Error Using In-Line Code
To check for an error, test the value of SQLSTATE after an SQL statement
executes. For example, When you want to check that a CONNECT statement
executed as expected, use the code shown in the following program:

1 *
2 *This program, COBERR1, tests the value of SQLSTATE
3 *after an SQL statement executes. This program checks
4 *the execution of a CONNECT statement.
5 *
6 IDENTIFICATION DIVISION.
7 PROGRAM-ID.
8 COBERR1.
9 *

10 ENVIRONMENT DIVISION.
11 CONFIGURATION SECTION.
12 SOURCE-COMPUTER. IFXSUN.
13 OBJECT-COMPUTER. IFXSUN.
14 *
15 DATA DIVISION.
16 WORKING-STORAGE SECTION.
17 *
18 PROCEDURE DIVISION.
19 RESIDENT SECTION 1.
20 *
21 *Begin Main routine. Execute an SQL statement
22 *and pass control to 100-ERROR-CHECK
23 *subroutine.
24 *
25 MAIN.
26 DISPLAY 'THIS IS A TEST OF COBERR1'.
27 DISPLAY ' '.
28 EXEC SQL
29 CONNECT TO 'nonexistent'
30 END-EXEC.
31 PERFORM 100-ERROR-CHECK.
32 EXEC SQL DISCONNECT ALL END-EXEC.
33 STOP RUN.
34 *
35 *Subroutine to check for errors. If SQLCODE does not
36 *equal ZERO (Success), display an error message.
37 *
38 100-ERROR-CHECK.
39 *
40 DISPLAY 'RUNNING ERROR CHECK ROUTINE'.
41 DISPLAY ' '.
42 IF SQLCODE IS NOT EQUAL TO ZERO
4-26 INFORMIX-ESQL/COBOL Programmer’s Manual

Checking for an Error Using In-Line Code
43 DISPLAY 'ERROR ' SQLSTATE
44 DISPLAY 'IN USING DATABASE'
45 DISPLAY ' '.
46 *

Alternatively, imagine writing a routine to process any error. Your program
can call the error routine each time that SQLSTATE returned with an
SQLSTATE error code not equal to 00000 (Success). The 100-ERROR-CHECK
routine, part of the following program retrieves the message associated with
an error. It also checks for other information about the error. It prints the error
message and other diagnostic information and then exits the program.

1 *
2 *This program, COBERR2, retrieves diagnostic
3 *information associated with an SQL statement.
4 *
5 IDENTIFICATION DIVISION.
6 PROGRAM-ID.
7 COBERR2.
8 *
9 ENVIRONMENT DIVISION.

10 CONFIGURATION SECTION.
11 SOURCE-COMPUTER. IFXSUN.
12 OBJECT-COMPUTER. IFXSUN.
13 *
14 DATA DIVISION.
15 WORKING-STORAGE SECTION.
16 *
17 *Declare variables.
18 *
19 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
20 77 MORE-EXCEPTIONS PIC X(1).
21 77 NUM-OF-EXCEPTIONS SQLINT.
22 77 ROWS-PROCESSED PIC S9(9) COMP-5.
23 77 SQLSTATE-VALUE PIC X(5).
24 77 CLASS-ID PIC X(254).
25 77 SUBCLASS-ID PIC X(254).
26 77 EXPLAIN-EXCEPTION PIC X(254).
27 77 MESSAGE-TEXT-LENGTH PIC S9(3) COMP-5.
28 77 SERVER-VALUE PIC X(254).
29 77 NAME-OF-CONNECTION PIC X(254).
30 77 COUNT-EX PIC S9(9) VALUE 1 COMP-5.
31 EXEC SQL END DECLARE SECTION END-EXEC.
32 *
33 77 ZERO-FIELD PIC X(5) VALUE "00000".
34 *
35 PROCEDURE DIVISION.
36 RESIDENT SECTION 1.
Error Handling 4-27

Checking for an Error Using In-Line Code
37 *
38 *Begin Main routine. CONNECT TO generates an error
39 *because the database "nonexistent" does not exist.
40 *Pass control to 100-ERROR-CHECK subroutine to
41 *check for exceptions.
42 *
43 MAIN.
44 DISPLAY 'THIS IS A TEST OF COBOLERR2'.
45 DISPLAY ' '.
46 EXEC SQL
47 CONNECT TO 'nonexistent'
48 END-EXEC.
49 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
50 PERFORM 100-ERROR-CHECK.
51 EXEC SQL DISCONNECT ALL END-EXEC.
52 STOP RUN.
53 *
54 *Subroutine to determine exceptions associated with
55 *the SQL statement in the main routine. Display
56 *exception information. Pass control to
57 *200-DIAGNOSE subroutine to diagnose each exception
58 *
59 100-ERROR-CHECK.
60 DISPLAY 'RUNNING GET DIAGNOSTICS FOR '.
61 DISPLAY 'MORE INFORMATION ON ERROR'.
62 EXEC SQL GET DIAGNOSTICS
63 :MORE-EXCEPTIONS=MORE,
64 :NUM-OF-EXCEPTIONS=NUMBER,
65 :ROWS-PROCESSED=ROW_COUNT
66 END-EXEC.
67 DISPLAY 'ARE THERE MORE EXCEPTIONS? Y/N: ',
68 MORE-EXCEPTIONS.
69 DISPLAY 'THE NUMBER OF EXCEPTIONS IS/ARE: ',

NUM-OF-EXCEPTIONS.
70 DISPLAY 'THE NUMBER OF ROWS PROCESSED IS: ',
71 ROWS-PROCESSED.
72 DISPLAY '******************************'.
73 PERFORM 200-DIAGNOSE UNTIL COUNT-EX IS
74 GREATER THAN NUM-OF-EXCEPTIONS.
75 *
76 *Subroutine to diagnose each exception associated with
77 *the SQL statement in the main routine. Display
78 *diagnostic information.
79 *
80 200-DIAGNOSE.
81 EXEC SQL GET DIAGNOSTICS EXCEPTION :COUNT-EX
82 :SQLSTATE-VALUE=RETURNED_SQLSTATE,
83 :CLASS-ID=CLASS_ORIGIN,
84 :SUBCLASS-ID=SUBCLASS_ORIGIN,
4-28 INFORMIX-ESQL/COBOL Programmer’s Manual

Automatically Checking for Errors Using the WHENEVER Statement
85 :EXPLAIN-EXCEPTION=MESSAGE_TEXT,
86 :MESSAGE-TEXT-LENGTH=MESSAGE_LENGTH,
87 :SERVER-VALUE=SERVER_NAME,
88 :NAME-OF-CONNECTION=CONNECTION_NAME
89 END-EXEC.
90 DISPLAY '*******EXCEPTION ', COUNT-EX, '********'.
91 DISPLAY 'THE VALUE OF SQLSTATE IS: ',
92 SQLSTATE-VALUE.
93 DISPLAY 'THE CLASS ORIGIN IS: ', CLASS-ID.
94 DISPLAY 'THE SUBCLASS ORIGIN IS: ', SUBCLASS-ID.
95 DISPLAY 'THE EXPLANATION OF THIS EXCEPTION IS: ',
96 EXPLAIN-EXCEPTION.
97 DISPLAY 'THE LENGTH OF THE EXPLANATION MESSAGE IS: ',
98 MESSAGE TEXT-LENGTH.
99 DISPLAY 'THE VALUE OF THE SERVER IS: ', SERVER-VALUE.

100 DISPLAY 'THE NAME OF THE CONNECTION IS: ',
101 NAME-OF-CONNECTION.
102 ADD 1 TO COUNT-EX.
103 *

Make sure you check the status of the SQLSTATE value after each SQL
statement. You can use the WHENEVER statement to reduce the amount of
potential code that you write to check for errors. The following section
explores how to use the WHENEVER statement.

Automatically Checking for Errors Using the WHENEVER
Statement
You can use the WHENEVER statement to trap all errors and warnings that
occur during the execution of SQL statements. Use the WHENEVER statement
to replace the conditional test of the SQLCODE value after each SQL
statement.

Use the WHENEVER statement to check for errors, SQLNOTFOUND, or
warnings. You can direct the program to take any of the following actions:

■ Continue execution

■ Stop execution

■ Execute a call

■ Go to a specified section of code

■ Perform a specified paragraph
Error Handling 4-29

Automatically Checking for Errors Using the WHENEVER Statement
For example, when you want to go to a 100-ERROR-CHECK routine every time
an error occurs in a paragraph, put the following statement in the early part
of the paragraph, before any SQL statements:

EXEC SQL WHENEVER ERROR GOTO 100-ERROR-CHECK END-EXEC.

Instead of using a GOTO instruction in the WHENEVER statement, you can
use the CALL keyword to call a routine, or the PERFORM keyword to perform
a specific paragraph. You can also use the STOP keyword to exit from the
program.

The GOTO keyword remains ANSI-compliant when used in the WHENEVER
statement. ESQL/COBOL designates the CALL, PERFORM, and STOP options
as Informix extensions to the ANSI standard.
4-30 INFORMIX-ESQL/COBOL Programmer’s Manual

Automatically Checking for Errors Using the WHENEVER Statement
The following program, WHENCHK, shows some ways you can use the
WHENEVER statement in your INFORMIX-ESQL/COBOL program. The
DISPLAY statements explain the actions of the WHENCHK program.

1 *This program, WHENCHK, shows how
2 *to use the ESQL/COBOL WHENEVER statement
3 *
4 IDENTIFICATION DIVISION.
5 PROGRAM-ID.
6 WHENCHK.
7 *
8 ENVIRONMENT DIVISION.
9 CONFIGURATION SECTION.

10 SOURCE-COMPUTER. IFXSUN.
11 OBJECT-COMPUTER. IFXSUN.
12 *
13 DATA DIVISION.
14 WORKING-STORAGE SECTION.
15 *
16 *Declare variables.
17 *
18 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
19 77 RETVAL PIC X(10).
20 EXEC SQL END DECLARE SECTION END-EXEC.
21 *
22 PROCEDURE DIVISION.
23 RESIDENT SECTION 1.
24 *
25 MAIN.
26
27 EXEC SQL
28 WHENEVER SQLERROR PERFORM SQLERR-CHECK
29 END-EXEC.
30
31 DISPLAY '**********'.
32 DISPLAY 'Connecting to default database server.'.
33
34 EXEC SQL CONNECT TO DEFAULT END-EXEC.
35
36 DISPLAY '**********'.
37 DISPLAY 'Testing WHENEVER SQLERROR.'.
38 DISPLAY 'Opening a database that does not exist.'.
39
40 EXEC SQL DATABASE 'nonexistent' END-EXEC.
41
42 DISPLAY '**********'.
43 DISPLAY 'Executing WHENEVER SQLERROR CONTINUE.'.
44
45 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
46
47 DISPLAY '**********'.
48 DISPLAY 'Executing WHENEVER NOT FOUND.'.
49
50 EXEC SQL
Error Handling 4-31

Automatically Checking for Errors Using the WHENEVER Statement
51 WHENEVER NOT FOUND PERFORM NO-DATA-PRINTOUT
52 END-EXEC.
53
54 DISPLAY '**********'.
55 DISPLAY 'Creating an empty database called nodata.'.
56
57 EXEC SQL
58 CREATE DATABASE nodata
59 END-EXEC.
60
61 DISPLAY '**********'.
62 DISPLAY 'Creating empty table in database.'.
63
64 EXEC SQL
65 CREATE TABLE empty (emptycol CHAR)
66 END-EXEC.
67
68 DISPLAY '**********'.
69 DISPLAY 'Testing WHENEVER NOT FOUND.'.
70 DISPLAY 'Selecting table containing no data.'.
71
72 EXEC SQL
73 SELECT * FROM empty
74 END-EXEC.
75
76 DISPLAY '**********'.
77 DISPLAY 'nodata database not needed...'.
78 DISPLAY 'for further testing. Dropped.'.
79
80 EXEC SQL DROP DATABASE nodata END-EXEC.
81
82 DISPLAY '**********'.
83 DISPLAY 'Executing WHENEVER SQLWARNING.'.
84
85 EXEC SQL
86 WHENEVER SQLWARNING PERFORM WARN-CHECK
87 END-EXEC.
88
89 DISPLAY '**********'.
90 DISPLAY 'Creating database testwarn...'.
91 DISPLAY 'to test WHENEVER SQLWARNING.'.
92
93 EXEC SQL
94 CREATE DATABASE testwarn
95 END-EXEC.
96
97 DISPLAY '**********'.
98 DISPLAY 'Creating table and columns...'.
99 DISPLAY 'within testwarn database.'.
100
101 EXEC SQL
102 CREATE TABLE WARNTAB (COL1 CHAR(22))
103 END-EXEC.
104
4-32 INFORMIX-ESQL/COBOL Programmer’s Manual

Automatically Checking for Errors Using the WHENEVER Statement
105 DISPLAY '**********'.
106 DISPLAY 'Inserting a string into warntab column.'.
107
108 EXEC SQL
109 INSERT INTO WARNTAB VALUES("THIS HAS TWENTY CHARS")
110 END-EXEC.
111
112 DISPLAY '**********'.
113 DISPLAY 'Testing WHENEVER SQLWARNING.'.
114 DISPLAY 'Truncating string value using SELECT.'.
115
116 EXEC SQL
117 SELECT * INTO :RETVAL FROM WARNTAB
118 END-EXEC.
119
120 DISPLAY '**********'.
121 DISPLAY 'testwarn database not needed...'.
122 DISPLAY 'for further testing. Dropped.'.
123
124 EXEC SQL DROP DATABASE testwarn END-EXEC.
125
126 DISPLAY '**********'.
127 DISPLAY 'Executing WHENEVER ERROR.'.
128
129 EXEC SQL
130 WHENEVER ERROR PERFORM ERROR-DISPLAY
131 END-EXEC.
132
133 DISPLAY '**********'.
134 DISPLAY 'Testing WHENEVER ERROR.'.
135 DISPLAY 'Opening a database that does not exist.'.
136
137 EXEC SQL DATABASE 'nonexistent' END-EXEC.
138
139 DISPLAY '**********'.
140 DISPLAY 'Calling perform statement to show...'.
141 DISPLAY 'scope limitation of WHENEVER statement.'.
142
143 PERFORM SQLERROR-SCOPE-TEST.
144
145 DISPLAY '**********'.
146 DISPLAY 'Program now out of scope test procedure.'.
147
148 DISPLAY 'Testing WHENEVER ERROR.'.
149 DISPLAY 'Making sure WHENEVER SQLERROR is...'.
150 DISPLAY 'out of scope. Following action is ...'.
151 DISPLAY 'intended to invoke only...'.
152 DISPLAY 'WHENEVER ERROR.'.
153 DISPLAY '**********'.
154 DISPLAY 'Opening a database that does not exist.'.
155
156 EXEC SQL DATABASE 'nonexistent' END-EXEC.
157
158 DISPLAY '**********'.
Error Handling 4-33

Automatically Checking for Errors Using the WHENEVER Statement
159 DISPLAY 'Now executing WHENEVER SQLERROR STOP.'.
160
161 EXEC SQL WHENEVER SQLERROR STOP END-EXEC.
162
163 DISPLAY '**********'.
164 DISPLAY 'Testing WHENEVER SQLERROR STOP.'.
165 DISPLAY 'Connecting to database that does not exist.'.
166 DISPLAY 'Intended to make program terminate early.'.
167 DISPLAY '**********'.
168 DISPLAY 'Opening a database that does not exist.'.
169
170 EXEC SQL DATABASE 'nonexistent' END-EXEC.
171
172 DISPLAY 'Program over.'.
173
174 STOP RUN.
175 *
176 SQLERR-CHECK.
177 DISPLAY '**********'.
178 DISPLAY 'WHENEVER SQLERROR has been called.'.
179 DISPLAY 'An SQL error occurred!'.
180 *
181 NO-DATA-PRINTOUT.
182 DISPLAY '**********'.
183 DISPLAY 'WHENEVER NOT FOUND has been called.'.
184 DISPLAY 'No Data in the database!'.
185 *
186 WARN-CHECK.
187 DISPLAY '**********'.
188 DISPLAY 'WHENEVER SQLWARNING has been called.'.
189 DISPLAY 'The warning statement is: ', SQLWARN0 OF SQLWARN.
190 *
191 ERROR-DISPLAY.
192 DISPLAY '**********'.
193 DISPLAY 'WHENEVER ERROR has been called.'.
194 *
195 SQLERROR-SCOPE-TEST.
196 DISPLAY '**********'.
197 DISPLAY 'Showing scope of WHENEVER SQLERROR.'.
198 DISPLAY 'This statement will control error events...'.
199 DISPLAY 'in this procedure only, and return control...'.
200 DISPLAY 'to the preceding WHENEVER statement...'.
201 DISPLAY 'in the main procedure.'.
202 DISPLAY '**********'.
203 DISPLAY 'Executing WHENEVER SQLERROR.'.
204 EXEC SQL
205 WHENEVER SQLERROR PERFORM SQLERR-CHECK
206 END-EXEC.
207 DISPLAY '**********'.
208 DISPLAY 'Testing WHENEVER SQLERROR scope.'.
209 DISPLAY 'Connecting to database that does not exist.'.
210 EXEC SQL DATABASE 'nonexistent' END-EXEC.
4-34 INFORMIX-ESQL/COBOL Programmer’s Manual

Checking for Warnings Using GET DIAGNOSTICS
For details of the syntax and use of the WHENEVER statement, refer to the
Informix Guide to SQL: Syntax.

Checking for Warnings Using GET DIAGNOSTICS
You can check for warnings with the SQLSTATE value and the GET
DIAGNOSTICS statement after the execution of each SQL statement. The
GET DIAGNOSTICS section in the Informix Guide to SQL: Syntax discusses the
contents of the SQLSTATE warning value.

The database server generates the following SQLSTATE warning values for an
SQL statement that produces a warning. The following list provides describes
the meaning of each value:

01000 Success with warning

01002 Disconnect error; transaction rolled back

01003 Null value eliminated in set function

01004 String data, right truncation

01005 Insufficient item descriptor areas

01006 Privilege not revoked
Error Handling 4-35

Checking for Warnings Using GET DIAGNOSTICS
The following program, WARN, executes an SQL statement that generates an
SQLSTATE warning value. That program inserts a string value into a table,
and truncates that value during a select from the table into a host variable.
After truncation, WARN displays diagnostic information about the warning
value.

1 *
2 *This program generates a warning and then diagnoses the warning
3 *using the GET DIAGNOSTICS statement.
4 *
5 IDENTIFICATION DIVISION.
6 PROGRAM-ID.
7 WARN.
8 *
9 ENVIRONMENT DIVISION.

10 CONFIGURATION SECTION.
11 SOURCE-COMPUTER. IFXSUN.
12 OBJECT-COMPUTER. IFXSUN.
13 *
14 DATA DIVISION.
15 WORKING-STORAGE SECTION.
16 *
17 *Declare variables.
18 *
19 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
20 77 NUM-OF-EXCEPTIONS PIC S9(9) COMP-5.
21 77 SQLSTATE-VALUE PIC X(5).
22 77 CLASS-ID PIC X(254).
23 77 SUBCLASS-ID PIC X(254).
24 77 EXPLAIN-EXCEPTION PIC X(254).
25 77 MESSAGE-TEXT-LENGTH PIC S9(3) COMP-5.
26 77 EX-NUM PIC S9(9) COMP-5.
27 77 COUNTER PIC S9(9) VALUE 1 COMP-5.
28 77 RETVAL PIC X(10).
29 EXEC SQL END DECLARE SECTION END-EXEC.
30 *
31 PROCEDURE DIVISION.
32 RESIDENT SECTION 1.
33 *
34 *Begin Main routine. This program generates a warning
35 *message about data truncation as follows:
36 *Establish a connection to the
37 *default database server. Create a database. Create
38 *a table. Insert a value into the datable. SELECT the
39 *table balue into a host variable that is too small to
40 *contain the value. Perform error checking on the
41 *SELECT by passing control to the ERR-CHK subroutine.
42 *Obtain exception and statement information on the
43 *warning condition. CLOSE and DROP the database.
44 *Terminate the connection.
45 *
46 MAIN.
47 EXEC SQL CONNECT TO DEFAULT END-EXEC.
4-36 INFORMIX-ESQL/COBOL Programmer’s Manual

Checking for Warnings Using GET DIAGNOSTICS
48 EXEC SQL CREATE DATABASE warnmsgs END-EXEC.
49 EXEC SQL
50 CREATE TABLE WARNTAB (COL1 CHAR(22))
51 END-EXEC.
52 EXEC SQL
53 INSERT INTO WARNTAB VALUES("This has twenty chars")
54 END-EXEC.
55 EXEC SQL
56 SELECT * INTO :RETVAL FROM WARNTAB
57 END-EXEC.
58 PERFORM EX-CHK.
59 EXEC SQL CLOSE DATABASE END-EXEC.
60 EXEC SQL DROP DATABASE warnmsgs END-EXEC.
61 EXEC SQL DISCONNECT ALL END-EXEC.
62 STOP RUN.
63 *
64 *Subroutine to determine and display the number of exceptions.
65 *EX-CHK passes control to ERR-CHK.
66 *
67 EX-CHK.
68 EXEC SQL GET DIAGNOSTICS :NUM OF EXCEPTIONS=NUMBER
69 END-EXEC.
70 DISPLAY 'THE NUMBER OF EXCEPTIONS IS: ', NUM OF EXCEPTIONS.
71 DISPLAY ' '.
72 DISPLAY '**'.
73 PERFORM ERR-CHK UNTIL COUNTER IS GREATER THAN
74 NUM-OF-EXCEPTIONS.
75 *
76 *Obtain and display diagnostic information about each
77 *warning exception.
78 *
79 ERR-CHK.
80 EXEC SQL GET DIAGNOSTICS EXCEPTION :COUNTER
81 :SQLSTATE-VALUE=RETURNED_SQLSTATE,
82 :CLASS-ID=CLASS_ORIGIN,
83 :SUBCLASS-ID=SUBCLASS_ORIGIN,
84 :EXPLAIN-EXCEPTION=MESSAGE_TEXT,
85 :MESSAGE-TEXT-LENGTH=MESSAGE_LENGTH END-EXEC.
86 DISPLAY '***********************************'.
87 DISPLAY 'THE SQLSTATE VALUE IS ', SQLSTATE-VALUE.
88 DISPLAY 'THE CLASS IS COMPLIANT TO ', CLASS-ID.
89 DISPLAY 'THE SUBCLASS IS COMPLIANT TO ', SUBCLASS-ID.
90 DISPLAY 'THE ERROR MESSAGE IS ', EXPLAIN-EXCEPTION.
91 DISPLAY 'THE MESSAGE LENGTH IS ', MESSAGE-TEXT-LENGTH.
92 ADD 1 TO COUNTER.
93 *
Error Handling 4-37

Checking for Warnings Using the SQLWARN OF SQLCA Structure
Checking for Warnings Using the SQLWARN OF SQLCA
Structure
The database server sets the SQLWARN0 field of the SQLWARN OF SQLCA
structure to W for all warning conditions. In addition, the database server sets
a second field in the SQLWARN OF SQLCA structure depending on the specific
warning. Refer to “The SQLCA Record” on page 4-17 for more information
on the SQLWARN fields.

The following example program, COBERR3, shows how to test for warnings
using the SQLWARN OF SQLCA structure. The COBERR3 program is closely
related to the WARN program listed in “Checking for Warnings Using GET
DIAGNOSTICS” on page 4-35. The COBERR3 program differs from the
WARN program because COBERR3 uses the SQLWARN OF SQLCA structure
instead of the GET DIAGNOSTICS statement to handle and diagnose
warnings. To test for warnings using in-line code, check to make sure your
ESQL/COBOL program set the first warning field (SQLWARN0) to W. You also
can use the WHENEVER statement with the SQLWARNING keyword to test
when the database server issued any warnings. Once you know that the
database server issued a warning, check the values of the fields in the
SQLWARN group item to determine the exact nature of the warning.
4-38 INFORMIX-ESQL/COBOL Programmer’s Manual

Checking for Warnings Using the SQLWARN OF SQLCA Structure
In the following program, when you truncate data to fit into a CHARACTER
host variable, your ESQL/COBOL program sets the SQLWARN1 and
SQLWARN0 warning flags, creates a database and a table, and generates
warnings on the truncation of the string value.

1 *
2 *This program, COBERR3, truncates data.
3 *The truncation generates a warning.
4 *The warning information is provided by the
5 *SQLCA structure.
6 *
7 IDENTIFICATION DIVISION.
8 PROGRAM-ID.
9 COBERR3.

10 *
11 ENVIRONMENT DIVISION.
12 CONFIGURATION SECTION.
13 SOURCE-COMPUTER. IFXSUN.
14 OBJECT-COMPUTER. IFXSUN.
15 *
16 DATA DIVISION.
17 WORKING-STORAGE SECTION.
18 *
19 *Declare variables.
20 *
21 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
22 77 RETVAL PIC X(10).
23 77 SLEN PIC S9(9) USAGE COMP-5.
24 EXEC SQL END DECLARE SECTION END-EXEC.
25 *
26 PROCEDURE DIVISION.
27 RESIDENT SECTION 1.
28 *
29 *Begin Main routine to create a string value
30 *and put it into variable too small to hold
31 *all of it. Pass control to 200-DO-WARN subroutine to
32 *diagnose warning message.
33 *
34 MAIN.
35 DISPLAY 'THIS IS A TEST OF COBERR3'.
36 DISPLAY ' '.
37 EXEC SQL CONNECT TO DEFAULT END-EXEC.
38 EXEC SQL
39 CREATE DATABASE WARNMSGS
40 END-EXEC.
41 *
42 EXEC SQL
43 CREATE TABLE WARNTAB (COL1 CHAR(22))
Error Handling 4-39

Checking for Warnings Using the SQLWARN OF SQLCA Structure
44 END-EXEC.
45 *
46 EXEC SQL
47 INSERT INTO WARNTAB VALUES("THIS HAS TWENTY CHARS")
48 END-EXEC.
49 *
50 EXEC SQL
51 SELECT * INTO :RETVAL FROM WARNTAB
52 END-EXEC.
53 *
54 MOVE 70 TO SLEN.
55 *
56 IF SQLWARN1 OF SQLWARN OF SQLCA = 'W'
57 PERFORM 200-DO-WARN.
58 *
59 EXEC SQL
60 DROP DATABASE WARNMSGS
61 END-EXEC.
62 *
63 EXEC SQL DISCONNECT ALL END-EXEC.
64 STOP RUN.
65 *
66 *Subroutine to check warning messages regarding
67 *truncation of data.
68 *
69 200-DO-WARN.
70 CALL ECO-MSG USING SQLCA, SQLERRM, SLEN, SQLCODE.
71 DISPLAY 'TRUNCATION OCCURRED'.
72 DISPLAY 'THE DATA IN THE DATABASE IS...'.
73 DISPLAY 'THIS HAS TWENTY CHARS.'
74 DISPLAY 'THE TRUNCATED VALUE IS ', RETVAL.
75 DISPLAY 'SQLWARN0 OF SQLWARN IS: ', SQLWARN0 OF SQLWARN.
76 DISPLAY 'SQLWARN1 OF SQLWARN IS: ', SQLWARN1 OF SQLWARN.
77 *
4-40 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-MSG
ECO-MSG

Purpose
Use the ECO-MSG message lookup routine to convert an Informix error
message number into the corresponding message text string.

Syntax
CALL ECO-MSG USING CA, S, S-LEN, STATUS.

CA the SQLCA record

S the error message character string; the ECO-MSG routine
merges the error message with any error message
parameters and stores the result into S

S-LEN the length of S

STATUS the error status code that ECO-MSG returns

Usage
Figure 4-8 shows the corresponding COBOL data type and COBOL
description for the arguments used in the ECO-MSG routine.

Figure 4-8
Corresponding COBOL Data

Types for ECO-MSG Variables

Argument COBOL Type COBOL Description

S CHARACTER PIC X(LENGTH)

 S-LEN INTEGER PIC S9(?) COMP

STATUS INTEGER PIC S9(?) COMP
Error Handling 4-41

ECO-MSG
In Figure 4-8, LENGTH is the length of the string in digits. The ECO-MSG
routine implements the PIC S9(?) shown in the COBOL Description column as
PIC S9(9) for a 4-byte integer, or as PIC S9(4) for a 2-byte integer. Refer to your
COBOL compiler documentation for information on whether to implement
2- or 4-byte integers.

Figure 4-8 also uses the word COMP in the COBOL Description column.
Figure 4-9 allows you to interpret that word and shows the COMP equiva-
lents for the types of COBOL compilers supported in ESQL/COBOL Version
7.2.

Figure 4-9
COMP Equivalents for COBOL Compilers

The ECO-MSG routine typically returns the error message number in
SQLCODE OF SQLCA. The ECO-MSG routine uses the system directory
($INFORMIXDIR/msg) to find error message text. Preceding portions in this
chapter discuss the use of SQLCA for error handling in ESQL/COBOL.

Some of the codes, listed in the next section and returned in the STATUS
parameter, equal five characters in length. You can correctly identify these
codes only when you define the STATUS variable as S9(x), where x>=5.

Return Codes
 0 Success.

-1227 Message file not found.

-1228 Message number not found in message file.

-1231 Cannot seek within message file.

-1232 Insufficient message buffer size.

-22234 Insufficient size for the buffer you provided. ECO-MSG
truncated the result to fit the buffer.

COMP Equivalent Type of COBOL Compiler

COMP-2 MF COBOL/2

COMP-5 MF COBOL/2

COMP-1 RM/COBOL-85
4-42 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-MSG
-22239 You exceeded the temporary buffer size.

-22275 INTERNAL ERROR: You exceeded the temporary buffer
length.

Example
The following code fragment from the ECOMSG program tests the ECO-MSG
routine. You do not declare the SQLERRM component in the working storage
section because the SQLCA record does that for you.

1 *
2 *This program tests the ECO-MSG message lookup routine.
3 *
4 IDENTIFICATION DIVISION.
5 PROGRAM-ID.
6 ECOMSG.
7 *
8 ENVIRONMENT DIVISION.
9 CONFIGURATION SECTION.

10 SOURCE-COMPUTER. IFXSUN.
11 OBJECT-COMPUTER. IFXSUN.
12 *
13 DATA DIVISION.
14 WORKING-STORAGE SECTION.
15 *
16 *Declare variable.
17 *
18 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
19 77 SLEN PIC S9(9) USAGE COMP-5.
20 EXEC SQL END DECLARE SECTION END-EXEC.
21 EXEC SQL INCLUDE SQLCA END-EXEC.
22 *
23 PROCEDURE DIVISION.
24 RESIDENT SECTION 1.
25 *
26 *Begin Main routine. Connect to database. Call
27 *ECO-MSG routine and display error message.
28 *
29 MAIN.
30 EXEC SQL
31 CONNECT TO 'personnel'
32 END-EXEC.
33 IF SQLCODE IS LESS THAN 0
Error Handling 4-43

ECO-MSG
34 DISPLAY 'ERROR', SQLCODE.
35 MOVE 70 TO SLEN.
36 CALL ECO-MSG USING SQLCA, SQLERRM, SLEN, SQLCODE.
37 DISPLAY 'THE ERROR MESSAGE IS ', SQLERRM.
38 STOP RUN.
39 *

Example Output
If the CONNECT statement fails, the output for the preceding code fragment
displays the following message:

THE ERROR MESSAGE IS Database not found or no system permission.
4-44 INFORMIX-ESQL/COBOL Programmer’s Manual

A Program That Uses Full Error Checking
A Program That Uses Full Error Checking
The GET DIAGNOSTICS statement retrieves only selected status information
from the diagnostics area and does not change the contents of the diagnostics
area or SQLSTATE. For more information on the syntax of the GET
DIAGNOSTICS statement, refer to the Informix Guide to SQL: Syntax. The
following example shows how to fully use GET DIAGNOSTICS, with an appli-
cation-declared SQLSTATE variable, in a complete program. This program
declares host variables, executes an SQL statement, and then performs error
checking using the GET DIAGNOSTICS statement. The FCHECK program
determines the number of exceptions that the SQL statement returns. When
no exceptions occur, the program terminates. When exceptions occur,
FCHECK performs an error-checking routine called ERR-CHK for each
exception. ERR-CHK determines exception information and passes the
exception field values into host variables. Then, the ERR-CHK routine
displays the contents of the host variables.

1 *This program, FCHECK, uses GET DIAGNOSTICS to diagnose the
2 *execution of an SQL statement.
3 *
4 IDENTIFICATION DIVISION.
5 PROGRAM-ID.
6 FCHECK.
7 *
8 ENVIRONMENT DIVISION.
9 CONFIGURATION SECTION.

10 SOURCE-COMPUTER. IFXSUN.
11 OBJECT-COMPUTER. IFXSUN.
12 *
13 DATA DIVISION.
14 WORKING-STORAGE SECTION.
15 *
16 *Declare variables.
17 * EXEC SQL BEGIN DECLARE SECTION END-EXEC.
18 77 MORE-EXCEPTIONS PIC X(1).
19 77 NUM-OF-EXCEPTIONS PIC S9(9) COMP-5.
20 77 ROWS-PROCESSED PIC S9(9) COMP-5.
21 77 SQLSTATE PIC X(5).
22 77 CLASS-ID PIC X(254).
23 77 SUBCLASS-ID PIC X(254).
24 77 EXPLAIN-EXCEPTION PIC X(254).
25 77 MESSAGE-TEXT-LENGTH PIC S9(3) COMP-5.
26 77 SERVER-VALUE PIC X(254).
27 77 NAME-OF-CONNECTION PIC X(254).
28 77 ERR-CNT PIC S9(9) VALUE 1 COMP-5.
29 EXEC SQL END DECLARE SECTION END-EXEC.
30 *
31 PROCEDURE DIVISION.
Error Handling 4-45

A Program That Uses Full Error Checking
32 RESIDENT SECTION 1.
33 *
34 *Begin Main routine. Execute an SQL statement.
35 *Obtain and display exception information.
36 *Perform error checking with the ERR-CHK
37 *subroutine.
38 *
39 MAIN.
40 EXEC SQL CONNECT TO 'stores7' END-EXEC.
41 EXEC SQL GET DIAGNOSTICS
42 :MORE-EXCEPTIONS=MORE,
43 :NUM-OF-EXCEPTIONS=NUMBER,
44 :ROWS-PROCESSED=ROW_COUNT END-EXEC.
45 DISPLAY 'ARE THERE MORE EXCEPTIONS?: ', MORE-EXCEPTIONS.
46 DISPLAY 'THE NUMBER OF EXCEPTIONS IS: ', NUM-OF-EXCEPTIONS.
47 DISPLAY 'THE NUMBER OF ROWS PROCESSED IS: ', ROWS-PROCESSED.
48 DISPLAY ' '.
49 DISPLAY '*******************************'.
50 DISPLAY ' '.
51 PERFORM ERR-CHK UNTIL ERR-CNT IS GREATER THAN
52 NUM-OF-EXCEPTIONS.
53 EXEC SQL DISCONNECT ALL END-EXEC.
54 DISPLAY ' '.
55 DISPLAY '------------END PROGRAM-------------'.
56 STOP RUN.
57 *
58 *Subroutine to diagnose each exception caused by the
59 *execution of an SQL statement. Display diagnostic
60 *information.
61 *
62 ERR-CHK.
63 DISPLAY ' '.
64 DISPLAY '-----------EXCEPTION------------'.
65 DISPLAY ' '.
66 EXEC SQL GET DIAGNOSTICS EXCEPTION :ERR-CNT
67 :SQLSTATE=RETURNED_SQLSTATE,
68 :CLASS-ID=CLASS_ORIGIN,
69 :SUBCLASS-ID=SUBCLASS_ORIGIN,
70 :EXPLAIN-EXCEPTION=MESSAGE_TEXT,
71 :MESSAGE-TEXT-LENGTH=MESSAGE_LENGTH,
72 :SERVER-VALUE=SERVER_NAME,
73 :NAME-OF-CONNECTION=CONNECTION_NAME END-EXEC.
74 DISPLAY 'EXCEPTION NUMBER: ', ERR-CNT.
75 DISPLAY 'THE VALUE OF SQLSTATE IS: ', SQLSTATE.
76 DISPLAY 'THE CLASS ORIGIN IS: ', CLASS-ID.
77 DISPLAY 'THE SUBCLASS ORIGIN IS: ', SUBCLASS-ID.
78 DISPLAY 'THE EXPLANATION OF THIS EXCEPTION IS: ',
79 EXPLAIN-EXCEPTION.
80 DISPLAY 'THE LENGTH OF THE EXPLANATION MESSAGE IS: ',
81 MESSAGE-TEXT-LENGTH.
82 DISPLAY 'THE VALUE OF THE SERVER IS: ', SERVER-VALUE.
83 DISPLAY 'THE NAME OF THE CONNECTION IS: ', NAME-OF CONNECTION.
84 ADD 1 TO ERR-CNT.
85 *
4-46 INFORMIX-ESQL/COBOL Programmer’s Manual

5
Chapter
Working with the Database
Server
Understanding Database Server Connections 5-4
Client/Server Architecture of ESQL/COBOL Applications . . . 5-4
Connecting an ESQL/COBOL Application to a Database Server . . 5-6

Providing Database Information 5-7
Setting Up the sqlhosts File 5-7
Using Database Server Format Conventions 5-7
Recognizing Types of Database Server Connections 5-8
Establishing Database Server Connections 5-11
Terminating Database Server Connections 5-12

Using Callback Procedures 5-13

Routines That Work with the Database Server 5-27
ECO-SIG . 5-28
ECO-SQB . 5-31
ECO-SQBCB . 5-32
ECO-SQD. 5-35
ECO-SQE . 5-37
ECO-SQS . 5-41

5-2 INFO
RMIX-ESQL/COBOL Programmer’s Manual

his chapter contains information about database server connections,
callback procedures, and INFORMIX-ESQL/COBOL routines you can use to
control database server processing. The following list presents that
information in order of appearance in this chapter:

■ “Understanding Database Server Connections” provides infor-
mation about client-server architecture and database server connec-
tions.

■ “Using Callback Procedures” provides information about a feature
called a callback procedure that you can use to interrupt SQL
processing.

■ “Routines That Work with the Database Server” provides infor-
mation on the following ESQL/COBOL database server manipulation
routines:

❑ ECO-SIG

❑ ECO-SQB

❑ ECO-SQBCB

❑ ECO-SQD

❑ ECO-SQE

❑ ECO-SQS

T

Working with the Database Server 5-3

Understanding Database Server Connections
Understanding Database Server Connections
This section provides background information on methods and syntax that
your INFORMIX-ESQL/COBOL program can use to establish connections to
database servers. This section discusses the following information:

■ “Client/Server Architecture of ESQL/COBOL Applications”
discusses general client server architecture and connection concepts
associated with INFORMIX-ESQL/COBOL.

■ “Connecting an ESQL/COBOL Application to a Database Server”
discusses the following information associated with
INFORMIX-ESQL/COBOL database server connections:

❑ “Providing Database Information”

❑ “Setting Up the sqlhosts File”

❑ “Using Database Server Format Conventions”

❑ “Recognizing Types of Database Server Connections”

❑ “Establishing Database Server Connections”

❑ “Terminating Database Server Connections”

Client/Server Architecture of ESQL/COBOL Applications
When an INFORMIX-ESQL/COBOL program executes an SQL statement, it
effectively passes the statement to a database server and receives database
and status information in return. Figure 5-1 shows that client/server process.

Figure 5-1
ESQL/COBOL Client/server Process

ESQL/COBOL

Client

Host 1

Server

Version 7.x

Database

Host 2
5-4 INFORMIX-ESQL/COBOL Programmer’s Manual

Client/Server Architecture of ESQL/COBOL Applications
The ESQL/COBOL program and the database server communicate with each
other through an interprocess-communication mechanism. The
ESQL/COBOL program represents the client process in the dialog because it
requests information from the database server. The database server repre-
sents the server process because it provides information in response to
requests from the client. The division of labor between the client and server
processes gives you an advantage in networks where data does not reside in
the same location as the client program that needs it. Figure 5-2 illustrates the
possible connections between an ESQL/COBOL program and local database
servers residing on the same computer.

Figure 5-3 illustrates an INFORMIX-ESQL/COBOL program connecting across
a network to an Informix Version 7.x remote database server.

Figure 5-2
ESQL/COBOL

Connecting to an
Informix Version 7.x

Local SE Database
Server or an

Informix Version 7.x
Local OnLine

Database Server

SE

Version 7.x

OnLine

Version 7.x

ESQL/COBOL

Client

Host 1

Figure 5-3
ESQL/COBOL

Connecting to an
Informix Version 7.x

Remote Database
Server

Server

Version 7.x

Host 2

ESQL/COBOL

Client

Host 1
Working with the Database Server 5-5

Connecting an ESQL/COBOL Application to a Database Server
Figure 5-4 illustrates an INFORMIX-ESQL/COBOL program using the Relay
Module component of an Informix Version 5.x local database server to
connect across a network to an Informix Version 7.x remote database server.

Connecting an ESQL/COBOL Application to a Database
Server
An ESQL/COBOL program includes the ability to communicate with
database servers that reside either on the same computer (local), or over a
network on other computers (remote). An INFORMIX-ESQL/COBOL program
can connect locally or across a network to the following types of database
servers:

■ A default database server is the one that your
INFORMIX-ESQL/COBOL program connects to automatically. To
specify a default database server, set the INFORMIXSERVER or
DBPATH environment variable. For more information, refer to
“Understanding a Default Connection” on page 5-10.

■ A specific database server is the one that you specify in an
INFORMIX-ESQL/COBOL statement.

Figure 5-4
ESQL/COBOL Using
the Relay Module of
an Informix Version
5.x Local Database

Server to Connect to
an Informix Version

7.x Remote
Database Server

Server

Version 7.x

Host 2

Host 1

Relay
Module

Version 5.x
ESQL/COBOL Client

Server

Version 5.x

Host 1
5-6 INFORMIX-ESQL/COBOL Programmer’s Manual

Connecting an ESQL/COBOL Application to a Database Server
Providing Database Information

Before your ESQL/COBOL application can communicate with a database
server, you must provide the following database server communications
information:

■ The locations of the database servers on the network

■ The type of interprocess-communication mechanism that the two
processes use

■ The name of a default database server used when the SQL statement
does not name a specific database server

You describe the database servers and the corresponding interprocess-
communication mechanisms in the $INFORMIXDIR/etc/sqlhosts file. You
provide the name of the default database server in the INFORMIXSERVER
environment variable.

Setting Up the sqlhosts File

Both the INFORMIX-OnLine Dynamic Server Administrator’s Guide and the
INFORMIX-SE Administrator’s Guide describe the procedure to create an
entry for a database server in the sqlhosts file. See your database adminis-
trator (DBA) to create the necessary entries in this file, particularly when no
database server exists on the computer where the client program runs. In this
case, you must provide an sqlhosts file on the host computers of both the
ESQL/COBOL client program and the database server.

Using Database Server Format Conventions

You can specify a database server using several types of formats. For more
information on database server naming conventions, refer to the Database
Name segment in the Informix Guide to SQL: Syntax.
Working with the Database Server 5-7

Connecting an ESQL/COBOL Application to a Database Server
Recognizing Types of Database Server Connections

Your INFORMIX-ESQL/COBOL program can establish the following types of
connections:

■ Multiple

■ Explicit

■ Implicit

■ Dormant

■ Current

■ Default

■ Specific

The following subsections describe the connections in the preceding list.

Understanding Multiple Connections

Your INFORMIX-ESQL/COBOL application can establish multiple database
server connections. However, that application can communicate with only
one database server at a time. You can establish multiple dormant connec-
tions, but only one current connection. For information on dormant connec-
tions, refer to “Understanding a Dormant Connection” on page 5-9. For
information on current connections, refer to “Understanding a Current
Connection” on page 5-9.

Understanding Explicit Connections

The following statements explicitly create or terminate connections:

■ CONNECT TO

■ SET CONNECTION

■ DISCONNECT

The preceding statements are considered explicit because they exhibit
different connection behavior than similar statements that predate them such
as DATABASE, CREATE DATABASE, DROP DATABASE, and so on. Refer to the
Informix Guide to SQL: Syntax for specific information on the behavior of the
statements in the preceding list.
5-8 INFORMIX-ESQL/COBOL Programmer’s Manual

Connecting an ESQL/COBOL Application to a Database Server
Understanding Implicit Connections

Implicit connections lack any association with the CONNECT TO, SET
CONNECTION, and DISCONNECT statements. Only the following SQL state-
ments or ESQL/COBOL routines implicitly create or terminate connections:

■ CLOSE DATABASE statement

■ CREATE DATABASE statement

■ DATABASE statement

■ DROP DATABASE statement

■ START DATABASE statement

■ ECO-SQE routine

■ ECO-SQS routine

The preceding statements are considered explicit because they produce
different connection behavior than CONNECT TO, SET CONNECTION, and
DISCONNECT produce. Refer to the Informix Guide to SQL: Syntax for specific
information on the statements in the preceding list. Refer to “ECO-SQE” on
page 5-37 and “ECO-SQS” on page 5-41 for information on the two
INFORMIX-ESQL/COBOL database server routines that appear in the
preceding list.

Understanding a Current Connection

Because your application can connect to multiple database servers but cannot
communicate with more than one database server at any one time, your
application communicates with a database server using a current connection.
Although communication occurs through the current connection, all other
database server connections remain dormant. Refer to the Informix Guide to
SQL: Syntax for specific information on the current connections.

Understanding a Dormant Connection

When your application uses a current connection to communicate with one
database server, all other database server connections remain dormant. A
dormant connection exists, but remains unused until your application makes
that connection current. Refer to the Informix Guide to SQL: Syntax for specific
information on dormant connections.
Working with the Database Server 5-9

Connecting an ESQL/COBOL Application to a Database Server
Understanding a Default Connection

Your application connects to the default database server when the connection
statement does not specify a database server. For example, each of the
following statements opens a database but none specifies a database server.
In each case, you connect to the default database server prior to opening the
database.

CONNECT TO 'stores7';
CONNECT TO '/usr/mustang/stores7';
DATABASE spitfire;
CONNECT TO DEFAULT;

To designate a default database server, you must first set the INFORMIX-
SERVER environment variable.

The following list describes the two types of default connections:

■ An implicit default connection occurs when you establish a default
connection without using CONNECT TO DEFAULT or SET
CONNECTION. The following examples illustrate an implicit default
connection:
DATABASE stores7
CALL ECO-SQS
START DATABASE ‘stores7’
CREATE DATABASE ‘stores7’

The preceding statements assume that no current connection exists,
or that a current default connection exists.

■ An explicit default connection occurs when you establish a default
connection using CONNECT TO or SET CONNECTION. The following
examples illustrate an explicit default connection:
CONNECT TO DEFAULT
SET CONNECTION DEFAULT
SET CONNECTION ‘stores7’

The last statement in the preceding example assumes that a
relationship exists between database environment and the default
database server.

Refer to the Informix Guide to SQL: Syntax for more information about
connecting to the default database server. Refer to “ECO-SQS” on page 5-41
for more information about the ECO-SQS routine.
5-10 INFORMIX-ESQL/COBOL Programmer’s Manual

Connecting an ESQL/COBOL Application to a Database Server
Understanding a Specific Connection

You establish a connection to a specific database server when you name that
database server in a CONNECT statement or in one of the DATABASE
statements, such as DATABASE, START DATABASE, and so on. Each of the
following statements establishes a connection to a specific database server
called thunderbolt:

CONNECT TO 'stores7@thunderbolt';
CONNECT TO '@thunderbolt';
DATABASE '//thunderbolt/stores7';

The following list describes the two types of specific connections:

■ An implicit specific connection occurs when you establish a specific
connection without using CONNECT TO or SET CONNECTION. The
following examples illustrate an implicit specific connection:
DATABASE 'stores7@thunderbolt'
START DATABASE 'stores7@thunderbolt'
CREATE DATABASE 'stores7@thunderbolt'

■ An explicit specific connection occurs when you establish a specific
connection using CONNECT TO or SET CONNECTION. The following
examples illustrate an explicit specific connection:
CONNECT TO 'stores7@thunderbolt'
SET CONNECTION 'storest7@thunderbolt'

Refer to the Informix Guide to SQL: Syntax for more information about
connecting to a specific database server.

Establishing Database Server Connections

The following list describes the SQL statements and INFORMIX-ESQL/COBOL
routines you can use to establish a database server connection.

■ CONNECT TO establishes a connection to a specified database server
that you specify. When you do not specify a database server, this
statement establishes a connection to the default database server.

■ CONNECT TO DEFAULT establishes a connection only to the default
database server.
Working with the Database Server 5-11

Connecting an ESQL/COBOL Application to a Database Server
■ CREATE DATABASE establishes a connection to the database server
that you specify and simultaneously creates a database. When you
do not specify a database server, this statement establishes a
connection to the default database server.

■ DATABASE establishes a connection to the database server that you
specify and simultaneously selects a database. When you do not
specify a database server, this statement establishes a connection to
the default database server.

■ ECO-SQS routine establishes a connection only to the default
database server.

■ SET CONNECTION reestablishes a connection. Transforms a dormant
connection into a current connection.

■ START DATABASE establishes a connection to the database server that
you specify and simultaneously selects a database. When you do not
specify a database server, this statement establishes a connection to
the default database server.

For more information on the preceding SQL statements, refer to the Informix
Guide to SQL: Syntax. For more information on the ECO-SQS routine, refer to
“ECO-SQS” on page 5-41.

Terminating Database Server Connections

The following list describes the SQL statements and INFORMIX-ESQL/COBOL
routines you can use to terminate a database server connection.

■ DISCONNECT ALL terminates all connections that your application
established.

■ DISCONNECT CURRENT terminates only the current connection.

■ DISCONNECT dbservername terminates a specific database server
connection where dbservername is the name of the database server
from which you are disconnecting.

■ DISCONNECT DEFAULT terminates all default connections.

■ DROP DATABASE terminates the specified database and thus
terminates the connection to that database.

■ ECO-SQE routine terminates all connections that your application
established.
5-12 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Callback Procedures
The DISCONNECT, DISCONNECT ALL, and DISCONNECT CURRENT
statements explicitly terminate database server connections. The remaining
statements and the ECO-SQE routine in the preceding list implicitly terminate
database server connections. For more information on the preceding SQL
statements, refer to the Informix Guide to SQL: Syntax. For more information
on the ECO-SQE routine, refer to “ECO-SQE” on page 5-37.

Using Callback Procedures
INFORMIX-ESQL/COBOL supports the use of callback procedures to provide
you with more control over database server processing. A callback procedure
is a procedure you create in a file separate from your application. The
callback procedure allows you to do other tasks while the database server
processes an SQL task. An ESQL/COBOL callback procedure allows you to do
the following:

■ Check the status of SQL processing

You can use the ECO-SQD routine inside your callback procedure to
make sure that the database server has finished SQL processing. In
addition, you can use the ECO-SQD return code status value as a flag
to trigger other events such as cancelling SQL processing, displaying
an interactive menu, calling other routines, or performing other non-
SQL tasks.

■ Cancel SQL processing

You can use the ECO-SQB routine inside your callback procedure to
cancel SQL processing.

■ Display an interactive menu during SQL processing, prompting the
user to choose an action

■ Do other tasks, or call other routines, during SQL processing.
However, you cannot use any statements or routines that start new
SQL processing.

You use the ECO-SQBCB routine to register your callback procedure before
your application can begin SQL processing. This tells your application the
name of the callback procedure you and the time intervals when your appli-
cation calls the callback procedure. Without a callback procedure, you cannot
elegantly or interactively break SQL processing while a program runs.
Figure 5-5 lists the client/server process for cancelling an SQL query.
Working with the Database Server 5-13

Using Callback Procedures
Figure 5-5
Steps for Client-Server Cancellation of an SQL Query

Step Client Action Database Server Action SQL Processing

1 Execute application Listen None

2 Execute SQL statement Listen None

3 Listen Receive SQL statement None

4 Listen Parse SQL statement None

5 Listen Listen Begin SQL processing

6 Listen Listen SQL processing
continues

7 Timeout interval oc-
curs

Listen SQL processing
continues

8 Underlying communi-
cations structure pass-
es control to callback
procedure in client
application

Listen SQL processing
continues

9 Client application
executes callback
procedure

Listen SQL processing
continues

10 Callback procedure ex-
ecutes ECOSQD routine
to determine whether
the database server is
still performing SQL
processing

Listen SQL processing
continues

11 Receive ECOSQD
request

Listen SQL processing
continues

12 Determines whether
SQL processing is still
occurring

Listen SQL processing
continues

 (1 of 3)
5-14 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Callback Procedures
13 Sends return code to
ECOSQD specifying
whether SQL process-
ing is still occurring

Listen SQL processing
continues.

14 Callback procedure
receives ECOSQD re-
turn code

Listen SQL processing
continues

15A If SQL processing is
finished, the callback
procedure terminates
and passes control to
the line of code follow-
ing the SQL statement
that started SQL pro-
cessing

Listen None

15B If SQL processing is
still occurring, the call-
back procedure exe-
cutes the ECOSQB
routine to request the
database server to
break SQL processing

Listen SQL processing
continues

16 The ECOSQB routine
sends a request to the
database server to
break SQL processing

Listen SQL processing
continues

17 Listen Receives request to break
SQL processing from the
ECOSQB routine

SQL processing
continues

18 Listen Starts terminating SQL
processing

Begins shutting down

19 Listen Sends message to
ECOSQB routine that the
database server has ter-
minated database server
processing

Step Client Action Database Server Action SQL Processing

 (2 of 3)
Working with the Database Server 5-15

Using Callback Procedures
After you register your callback procedure, you create a separate callback
procedure file that your application can call. Figure 5-6 shows the differences
between a callback procedure and other INFORMIX-ESQL/COBOL
procedures.

Figure 5-6
Callback Procedure Compared with

Other ESQL/COBOL Procedures

20 The ECOSQB routine
receives status
notification from the
database server that
SQL processing is
terminating.

Listen

21 Callback procedure
passes control to the
line of code following
the SQL statement that
started SQL processing

Listen

22 Application executes
line of code following
the SQL statement that
started SQL
processing.

Listen

23 Application execution
resumes

Listen None

Step Client Action Database Server Action SQL Processing

 (3 of 3)

Callback procedure Other ESQL/COBOL procedures

Must register using the
ECO-SQBCB routine

Not registered

Called automatically at a specific
time interval that you specify

Called only using a PERFORM statement

 (1 of 2)
5-16 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Callback Procedures
The following list outlines the rules for creating a callback procedure:

1. Write the callback procedure. It must exist in a different file than the
one containing the calling program where you register the callback
procedure.

2. In the WORKING-STORAGE section of the callback procedure file,
make sure you declare all variables used in the callback procedure.

3. The callback procedure file name must match the file name specified
using the ECO-SQBCB callback registration routine located in your
calling program.

4. Make sure you declare a status variable in the LINKAGE section of the
callback procedure file. That status variable allows you to check the
status of SQL processing while the callback procedure executes. The
following list shows the three possible values and their descriptions:

5. Remember, a callback procedure is not a procedure within a file, it is
an entire file called from your calling program.

Called during SQL processing Not called during SQL processing

Must reside in a file separate
from the calling program

Can reside in calling program or in a file sepa-
rate from the calling program

Is an entire file Is only a procedure and never more than part of
an entire file

Callback procedure Other ESQL/COBOL procedures

 (2 of 2)

0 SQL processing is complete. When this value occurs, do not
attempt to break SQL processing. Unregister the callback
routine and return to the calling program.

1 Your callback request has begun. This intermediary step
requires no action.

2 SQL processing is still active. When this value occurs, you
can break SQL processing using the ECO-SQB routine. After
you break SQL processing, unregister the callback procedure
and return to the calling program.
Working with the Database Server 5-17

Using Callback Procedures
6. Make sure you compile your callback procedure file before you com-
pile the calling program. Otherwise, the calling program does not
compile successfully.

The following code fragment, from the CALLPROC procedure file, shows how
to write a callback procedure. First, the code fragment calls the ECO-SQD
routine to see whether database processing is still active. When database
processing is active, the callback procedure terminates. No other callback
procedure actions occur.

However, when the ECO-SQD routine returns a value of -439, the callback
procedure takes actions based on the status code variable declared in the
LINKAGE section. If SQL processing is still active, the callback procedure calls
ECO-SQB and breaks SQL processing. When the callback procedure ends, it
unregisters ECO-SQBCB and program control returns to the calling program.
The calling program, CAN-QRY, starts running again at the line following the
cancelled SQL processing statement. The comments in the following example
code fragment explain what the CALLPROC callback procedure does.

1 *
2 *Callback procedure program callproc.
3 *This procedure is called by another
4 *ESQL/COBOL program. It checks on the
5 *status of SQL processing. If SQL
6 *processing is active, it cancels SQL
7 *processing. If SQL processing is not
8 *active, it unregisters the callback
9 *function. When finished, it passes

10 *control to the calling function.
11 *
12 IDENTIFICATION DIVISION.
13 PROGRAM-ID. CALLPROC.
14 *
15 ENVIRONMENT DIVISION.
16 CONFIGURATION SECTION.
17 SOURCE-COMPUTER. IFXSUN.
18 OBJECT-COMPUTER. IFXSUN.
19 *
20 DATA DIVISION.
21 *
22 WORKING-STORAGE SECTION.
23 *
5-18 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Callback Procedures
24 *Declare variables. CT-TIME holds the
25 *ECO-SQBCB time-out value (milliseconds).
26 *CB-NAME holds the name of the ECO-SQBCB
27 *procedure name. CB-NAME-LEN holds the
28 *length of the CB-NAME string. ECOSQD-STAT-CODE
29 *holds the status code returned by the
30 *ECOSQD routine. SQBCB-STAT-CODE holds
31 *the status code returned by the ECO-SQBCB routine.
32 *
33 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
34 77 CB-TIME PIC S9(9) COMP-5.
35 77 CB-NAME PIC X(12).
36 77 CB-NAME-LEN PIC S9(9) COMP-5 VALUE 12.
37 77 ECOSQD-STAT-CODE PIC S9(9) COMP-5.
38 77 SQBCB-STAT-CODE PIC S9(9) COMP-5.
39 EXEC SQL END DECLARE SECTION END-EXEC.
40
41 *The following global variable, DID-IT-BREAK,
42 *tells you if SQL processing is active
43 *while a callback request is underway.
44
45 *
46 01 DID-IT-BREAK IS GLOBAL PIC S9(9).
47
48 *The following linkage variable, CB-STAT-CODE,
49 *allows you to check the status of the
50 *callback procedure.
51
52 LINKAGE SECTION.
53 01 CB-STAT-CODE PIC S9(9) COMP-5.
54 *
55 *Begin callback procedure.
56 *
57 PROCEDURE DIVISION USING CB-STAT-CODE.
58 RESIDENT SECTION 1.
59 *
60 DISPLAY ' '.
61 DISPLAY 'Callback status code is: ', CB-STAT-CODE.
62 DISPLAY ' '.
63 DISPLAY 'Callback procedure activated.'.
64 DISPLAY ' '.
65 DISPLAY 'Attempting to determine...'.
66 DISPLAY 'if SQL processing is still active.'.
67 DISPLAY '**********'.
68 *
69 *Check if SQL processing is active or not.
70 *
71 CALL ECO-SQD USING ECOSQD-STAT-CODE.
72 *
73 DISPLAY 'ECO-SQD status code is: ', ECOSQD-STAT-CODE.
74 *
75 *If SQL processing is active (-439), execute the following
76 *conditional statement.
77 *
Working with the Database Server 5-19

Using Callback Procedures
78 IF ECOSQD-STAT-CODE IS EQUAL TO -439
79 DISPLAY '**********'
80 DISPLAY 'SQL Processing is still active.'
81 DISPLAY '**********'
82 *
83 *Check the linkage variable to see if SQL processing is
84 *still active or not.
85 *
86 *If SQL processing is not active (0), go to the
87 *last ELSE statement, unregister the callback procedure,
88 *and return to the calling program.
89 *
90 IF CB-STAT-CODE IS EQUAL TO 0
91 DISPLAY 'SQL Processing finished.'
92 DISPLAY 'No need to break SQL processing now!'
93 DISPLAY 'No more calls to Callback procedure.'
94 DISPLAY 'Sorry!'
95 DISPLAY '**********'
96 *
97 *If SQL processing is still active, and the callback
98 *request succeeded and is underway (1), move 0 into the
99 *global flag variable DID-IT-BREAK to tell the next
100*ELSE statement that it is okay to break SQL processing
101*and return to the calling program.
102*
103 ELSE
104 IF CB-STAT-CODE IS EQUAL TO 1
105 DISPLAY 'Your Callback request has begun.'
106 DISPLAY 'Please be patient.'
107 DISPLAY '**********'
108 MOVE 0 to DID-IT-BREAK
109*
110*If the global flag variable DID-IT-BREAK is 0, call the
111*ECO-SQB routine to break SQL processing. Then, unregister
112*the callback procedure and return to the calling program.
113*
114 ELSE
115 IF DID-IT-BREAK IS EQUAL TO 0
116 DISPLAY 'SQL Processing is still active.'
117 DISPLAY 'Calling ECO-SQB to break SQL query.'
118 DISPLAY '**********'
119 CALL ECO-SQB
120 DISPLAY 'Request to break in progress.'
121 DISPLAY '**********'
122 DISPLAY 'Unregistering Callback procedure.'
123 MOVE " " TO CB-NAME
124 MOVE -1 TO CB-TIME
125 CALL ECO-SQBCB USING CB-TIME, CB-NAME,
126 CB-NAME-LEN, SQBCB-STAT-CODE
127 DISPLAY '**********'
128 DISPLAY 'Callback procedure unregistered.'
129 DISPLAY 'ECO-SQBCB code: ', SQBCB-STAT-CODE
130 DISPLAY '**********'
131*
5-20 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Callback Procedures
132*If DID-IT-BREAK is not 0, move 1 into DID-IT-BREAK so that
133*the program does not call ECO-SQB to break SQL processing
134*the next time through the procedure. Then, return to the
135*calling program.
136*
137 ELSE
138 MOVE 1 TO DID-IT-BREAK
139*
140*If SQL Processing was not initially found to be active
141*by the first IF statement in this procedure, unregister
142*the callback procedure and return to the calling program.
143*
144 ELSE
145 DISPLAY '**********'
146 DISPLAY 'SQL Processing not active.'
147 DISPLAY 'No need to call callback procedure again.'
148 DISPLAY '**********'
149 DISPLAY 'Unregistering Callback procedure.'
150 MOVE " " TO CB-NAME
151 MOVE -1 TO CB-TIME
152 CALL ECO-SQBCB USING CB-TIME, CB-NAME,
153 CB-NAME-LEN, SQBCB-STAT-CODE
154 DISPLAY '**********'
155 DISPLAY 'Callback procedure unregistered.'
156 DISPLAY 'ECO-SQBCB code: ', SQBCB-STAT-CODE
157 DISPLAY '**********'.
158 DISPLAY '**********'.
Working with the Database Server 5-21

Using Callback Procedures
The following code fragment, from the CAN-QRY program, shows how to call
a callback procedure during SQL processing. The WORKING-STORAGE
section sets the ECO-SQBCB TIME-OUT variable to 5 and forces the CAN-QRY
program to call the callback routine every 5 milliseconds. The SELECT
statement found in CAN-QRY is, by design, very long so that the TIMEOUT
value occurs during SQL processing and CAN-QRY calls the callback
procedure. You can find the callback procedure, CALLPROC, listed on the
preceding pages.

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CAN-QRY.
3 *
4 ENVIRONMENT DIVISION.
5 CONFIGURATION SECTION.
6 SOURCE-COMPUTER. IFXSUN.
7 OBJECT-COMPUTER. IFXSUN.
8 *
9 DATA DIVISION.

10 *
11 WORKING-STORAGE SECTION.
12
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 CB-STAT-CODE PIC S9(9) COMP-5.
18 77 CB-TIME PIC S9(9) COMP-5 VALUE 5.
19 77 CB-NAME PIC X(12) VALUE 'CALLPROC'.
20 77 CB-NAME-LEN PIC S9(9) COMP-5 VALUE 12.
21 77 ECOSQD-STAT-CODE PIC S9(9) COMP-5.
22 77 ECOSQB-STAT-CODE PIC S9(9) COMP-5.
23 EXEC SQL END DECLARE SECTION END-EXEC.
24 *
25
26 PROCEDURE DIVISION.
27 RESIDENT SECTION 1.
28 *
29 MAIN.
30 PERFORM CONNECT-PROC.
31 PERFORM REGISTER-PROC.
32 PERFORM LONG-SQL-QUERY.
33 PERFORM DISCONNECT-PROC.
34 PERFORM CLEANUP.
35 STOP RUN.
36
37 *
38 CONNECT-PROC.
39 DISPLAY '**********'.
40 DISPLAY 'Connecting to stores7 database.'.
41 EXEC SQL CONNECT TO 'stores7@steveol6' END-EXEC.
42 DISPLAY 'Checking for database connection errors.'.
43 PERFORM MAIN-ERROR-CHECK.
5-22 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Callback Procedures
44 *
45 REGISTER-PROC.
46 DISPLAY '**********'.
47 DISPLAY 'Registering Procedure.'.
48 CALL ECO-SQBCB USING CB-TIME, CB-NAME,
49 CB-NAME-LEN, CB-STAT-CODE.
50 DISPLAY 'Checking for registration errors.'.
51 PERFORM MAIN-ERROR-CHECK.
52 *
53 DISCONNECT-PROC.
54 DISPLAY '**********'.
55 DISPLAY 'Disconnecting stores7 database.'.
56 EXEC SQL DISCONNECT 'stores7@steveol6' END-EXEC.
57 DISPLAY 'Checking for disconnect errors.'.
58 PERFORM MAIN-ERROR-CHECK.
59 *
60 CLEANUP.
61 DISPLAY '**********'.
62 DISPLAY 'Program over.'.
63 *
64 LONG-SQL-QUERY.
65 DISPLAY '**********'.
66 DISPLAY 'Performing long select.'.
67 EXEC SQL
68 SELECT * FROM stock a0, stock a1, stock a2, stock a3,
69 stock a4, stock a5, stock a6, stock a7, stock a8,
70 stock a9, stock b0, stock b1, stock b2, stock b3,
71 stock b4, stock b5, stock b6, stock b7, stock b8,
72 stock b9, stock c0, stock c1, stock c2, stock c3,
73 stock c4, stock c5, stock c6, stock c7, stock c8,
74 stock c9, stock d0, stock d1, stock d2, stock d3,
75 stock d4, stock d5, stock d6, stock d7, stock d8,
76 stock d9, stock e0, stock e1, stock e2, stock e3,
77 stock e4, stock e5, stock e6, stock e7, stock e8,
78 stock e9, stock f0, stock f1, stock f2, stock f3,
79 stock f4, stock f5, stock f6, stock f7, stock f8,
80 stock f9, stock g0, stock g1, stock g2, stock g3,
81 stock g4, stock g5, stock g6, stock g7, stock g8,
82 stock g9, stock h0, stock h1, stock h2, stock h3,
83 stock h4, stock h5, stock h6, stock h7, stock h8,
84 stock h9, stock i0, stock i1, stock i2, stock i3,
85 stock i4, stock i5, stock i6, stock i7, stock i8,
86 stock i9, stock j0, stock j1, stock j2, stock j3,
87 stock j4, stock j5, stock j6, stock j7, stock j8,
88 stock j9, stock k0, stock k1, stock k2, stock k3,
89 stock k4, stock k5, stock k6, stock k7, stock k8,
90 stock k9, stock l0, stock l1, stock l2, stock l3,
91 stock l4, stock l5, stock l6, stock l7, stock l8,
92 stock l9, stock m0, stock m1, stock m2, stock m3,
93 stock m4, stock m5, stock m6, stock m7, stock m8,
94 stock m9, stock n0, stock n1, stock n2, stock n3,
95 stock n4, stock n5, stock n6, stock n7, stock n8,
96 stock n9, stock o0, stock o1, stock o2, stock o3,
97 stock o4, stock o5, stock o6, stock o7, stock o8,
Working with the Database Server 5-23

Using Callback Procedures
98 stock o9, stock p0, stock p1, stock p2, stock p3,
99 stock p4, stock p5, stock p6, stock p7, stock p8,
100 stock p9, stock q0, stock q1, stock q2, stock q3,
101 stock q4, stock q5, stock q6, stock q7, stock q8,
102 stock q9, stock r0, stock r1, stock r2, stock r3,
103 stock r4, stock r5, stock r6, stock r7, stock r8,
104 stock r9, stock s0, stock s1, stock s2, stock s3,
105 stock s4, stock s5, stock s6, stock s7, stock s8,
106 stock s9, stock t0, stock t1, stock t2, stock t3,
107 stock t4, stock t5, stock t6, stock t7, stock t8,
108 stock t9, stock u0, stock u1, stock u2, stock u3,
109 stock u4, stock u5, stock u6, stock u7, stock u8,
110 stock u9, stock v0, stock v1, stock v2, stock v3,
111 stock v4, stock v5, stock v6, stock v7, stock v8,
112 stock v9, stock w0, stock w1, stock w2, stock w3,
113 stock w4, stock w5, stock w6, stock w7, stock w8,
114 stock w9, stock x0, stock x1, stock x2, stock x3,
115 stock x4, stock x5, stock x6, stock x7, stock x8,
116 stock x9, stock z0, stock z1, stock z2, stock z3,
117 stock z4, stock z5, stock z6, stock z7, stock z8,
118 stock z9
119 END-EXEC.
120 DISPLAY '**********'.
121 DISPLAY 'Performing post-query error checking.'.
122 PERFORM MAIN-ERROR-CHECK.
123 *
124 MAIN-ERROR-CHECK.
125 DISPLAY '**********'.
126 IF SQLCODE OF SQLCA IS EQUAL TO 0
127 DISPLAY 'No errors.'.
128 IF SQLCODE OF SQLCA IS NOT EQUAL TO 0
129 IF SQLCODE OF SQLCA IS EQUAL TO 100
130 DISPLAY 'No rows found.'
131 ELSE IF SQLCODE OF SQLCA IS EQUAL TO -213
132 DISPLAY 'Fetch interrupted by user.'
133 ELSE DISPLAY 'Error is: ', SQLCODE OF SQLCA.
5-24 INFORMIX-ESQL/COBOL Programmer’s Manual

Using Callback Procedures
Example Output
The output from the preceding code fragment shows how a callback routine
establishes a connection to a database server, registers a callback procedure,
begins SQL processing, and then terminates SQL processing when it calls the
callback procedure.

Connecting to stores7 database.
Checking for database connection errors.

No errors.

Registering Procedure.
Checking for registration errors.

No errors.

Performing long select.

Callback status code is: +0000000001

Callback procedure activated.

Attempting to determine...
if SQL processing is still active.

ECO-SQD status code is: -0000000439

SQL Processing is still active.

Your Callback request has begun.
Please be patient.

Callback status code is: +0000000002

Callback procedure activated.

Attempting to determine...
if SQL processing is still active.

ECO-SQD status code is: -0000000439

SQL Processing is still active.

SQL Processing is still active.
Calling ECO-SQB to break SQL query.
Working with the Database Server 5-25

Using Callback Procedures

Request to break in progress.

Unregistering Callback procedure.

Callback procedure unregistered.
ECO-SQBCB code: +0000000000

Performing post-query error checking.

Error is: +0000000000

Disconnecting stores7 database.
Checking for disconnect errors.

Error is: +0000000000

Program over.

For more information on the syntax and use of the ECO-SQB, ECO-SQBCB, and
ECO-SQD routines, refer to “Routines That Work with the Database Server”
on page 5-27.
5-26 INFORMIX-ESQL/COBOL Programmer’s Manual

Routines That Work with the Database Server
Routines That Work with the Database Server
The following sections list and fully describe the run-time routines that you
can use to control the database server processes. (For additional information
on connection management, refer to the description of the CONNECT,
DISCONNECT, and SET CONNECTION statements in the Informix Guide to
SQL: Syntax.) Figure 5-7 lists the ESQL/COBOL database server manipulation
routines.

Figure 5-7
Database Server Manipulation Routines

Use these routines in your COBOL programs. When you use the esqlcobol
compiler shell script, ESQL/COBOL automatically links run-time routines.

Routine Name What It Does

ECO-SIG Performs signal handling and cleans up child processes

ECO-SQB Sends the database server a request to stop processing

ECO-SQBCB Passes control to callback function during SQL processing

ECO-SQD Checks whether database server is processing an SQL task

ECO-SQE Terminates a database server connection

ECO-SQS Starts a database server connection
Working with the Database Server 5-27

ECO-SIG
ECO-SIG

Purpose
Use ECO-SIG, a run-time SQL routine, to perform signal handling and cleanup
for defunct child processes. When you do not clean up defunct child
processes within an application, you can run out of processes.

Syntax
CALL ECO-SIG USING SIGMODE.

SIGMODE a small integer set to one of the following values:

0 indicates the initial state that you must specify to
enable or disable signal handling.

1 indicates that you disabled signal handling.

2 indicates that you enabled signal handling again.

Usage
If you want the Informix library to trap signals, call the ECO-SIG routine with
SIGMODE set to 0 at the beginning of your application. This initial call to
ECO-SIG must occur before the first SQL statement in the program. To turn off
signal handling later, call ECO-SIG with SIGMODE set to 1. Then, to reenable
signal handling, call ECO-SIG with SIGMODE set to 2.
5-28 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SIG
Example
The following code fragment from the ECOSIG program shows how to use
the ECO-SIG routine:

1 *The ECO-SIG routine enables the Informix library to perform
2 *signal handling. This program, ECOSIG, enables
3 *signal handling, disables signal handling,
4 *and re-enables signal handling.
5 *
6 IDENTIFICATION DIVISION.
7 PROGRAM-ID.
8 ECOSIG.
9 *

10 ENVIRONMENT DIVISION.
11 CONFIGURATION SECTION.
12 SOURCE-COMPUTER. IFXSUN.
13 OBJECT-COMPUTER. IFXSUN.
14 *
15 DATA DIVISION.
16 WORKING-STORAGE SECTION.
17 *
18 *Declare variable.
19 *
20 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
21 77 SIGMODE SQLSMINT.
22 EXEC SQL END DECLARE SECTION END-EXEC.
23 *
24 PROCEDURE DIVISION.
25 RESIDENT SECTION 1.
26 *
27 *Begin Main routine. Enable signal handling. Disable
28 *signal handling. Re-enable signal handling.
29 *
30 MAIN.
31 DISPLAY 'ENABLE SIGNAL HANDLING OF INFORMIX LIBRARY.'
32 DISPLAY 'BEFORE EXECUTING SQL STATEMENT.'
33 DISPLAY ' '.
34 MOVE 0 TO SIGMODE.
35 CALL ECO-SIG USING SIGMODE.
36 DISPLAY 'SIGMODE IS: ', SIGMODE.
37 DISPLAY ' '.
38 EXEC SQL CONNECT TO 'stores7' END-EXEC.
39 *
40 DISPLAY 'DISABLE SIGNAL HANDLING OF INFORMIX LIBRARY.'
41 MOVE 1 TO SIGMODE.
42 CALL ECO-SIG USING SIGMODE.
43 DISPLAY 'SIGMODE IS: ', SIGMODE.
Working with the Database Server 5-29

ECO-SIG
44 DISPLAY ' '.
45 *
46 DISPLAY 'RE-ENABLE SIGNAL HANDLING OF INFORMIX LIBRARY.'
47 MOVE 2 TO SIGMODE.
48 CALL ECO-SIG USING SIGMODE.
49 DISPLAY 'SIGMODE IS: ', SIGMODE.
50 DISPLAY ' '.
51 STOP RUN.
52 *

Example Output
The following output from the preceding code fragment shows how the
ECO-SIG routine initially enables, disables, and re-enables signal handling:

ENABLE SIGNAL HANDLING OF INFORMIX LIBRARY
BEFORE EXECUTING SQL STATEMENT.

SIGMODE IS: +00000
EXECUTE SQL STATEMENT

DISABLE SIGNAL HANDLING OF INFORMIX LIBRARY
SIGMODE IS: +00001

RE-ENABLE SIGNAL HANDLING OF INFORMIX LIBRARY
SIGMODE IS: +00002
5-30 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQB
ECO-SQB

Purpose
Use ECO-SQB, a run-time SQL routine, to send the database server a request
to interrupt processing of the current query.

Syntax
CALL ECO-SQB.

Usage
The database server receives the interrupt signal and returns status and
control to the application process as if the SQL statement terminated with an
error condition. Use ECO-SQB only after you establish a database connection.
Currently, you can call the ECO-SQB routine only within a callback procedure.
For a complete explanation of callback procedures, and using the ECO-SQB
routine within a callback procedure, refer to “Using Callback Procedures” on
page 5-13.

Warning: Some resources that SQL statements establish prior to the interrupt remain
after the database server terminates SQL processing. You must decide whether to
terminate cursors, databases, transactions, procedures, descriptors, and so on. You
probably need to roll your work back.

Example
The following example program fragment shows how to use the ECO-SQB
routine. In the callback procedure, you call the ECO-SQB routine after you
determine that SQL processing is still active. For a full example of how to use
the ECO-SQB routine in a program, refer to “Using Callback Procedures” on
page 5-13.

1 *
2 IF ECOSQD-STAT-CODE IS EQUAL TO -419
3 DISPLAY 'Requesting SQL processing break.'
4 CALL ECO-SQB
5 DISPLAY 'SQL Processing terinated.'.
Working with the Database Server 5-31

ECO-SQBCB
ECO-SQBCB

Purpose
Use ECO-SQBCB, a run-time SQL routine, to register a callback procedure.

Syntax
CALL ECO-SQBCB USING TIME-OUT, CALLBACK, STRLEN, STATUS.

TIME-OUT a period of time you specify in milliseconds. When that
time period expires, your callback procedure executes.

CALLBACK the name of your callback procedure

STRLEN the length (in characters or bytes) of your callback
procedure name

STATUS a small integer that the ECO-SQBCB routine sets to one of
the following values:

<0 indicates an unsuccessful call to
ECO-SQBCB.

0 indicates a successful call to
ECO-SQBCB.
5-32 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQBCB
Usage
An SQL statement can take a long time to execute (for example, a complicated
SELECT statement on a large table). Situations can occur where you want to
check on the status of SQL processing or cancel SQL processing.The ECO-
SQBCB routine registers a callback procedure so that, at specific time intervals
while the database server processes an SQL task, the callback procedure
executes and allows you to make decisions or perform other tasks without
interrupting SQL processing. In addition, after your program registers the
callback procedure, your program always calls the callback procedure at least
twice (once at the start of SQL processing and once at the end of SQL
processing.). Sometimes, SQL processing ends before your program reaches
the first TIME-OUT interval. Also, INSERT statements stop executing when
your program calls a callback procedure. You can use the callback procedure
to check the status of SQL processing using the ECO-SQD routine, or to
interrupt SQL processing using the ECO-SQB routine.

You unregister a callback procedure when you want the calling program to
stop calling the callback procedure. After your callback procedure calls the
ECO-SQB routine to break SQL processing, make sure you unregister that
callback procedure. To unregister a callback procedure, move a blank string
into the CALLBACK name variable, and a value of -1 into the TIME-OUT
variable, then call the callback procedure.

For more information on callback procedures refer to “Using Callback Proce-
dures” on page 5-13.

Warning: Do not use the ECO-SQBCB routine when your ESQL/COBOL application
uses shared memory, olipcshm, as the NETTYPE to connect to an OnLine database
server. Shared memory is not a true network protocol and does not handle non-
blocking I/O needed to support a callback procedure. When used with shared memory,
the ECO-SQBCB call appears to register the callback function (it returns zero) but
during SQL requests, the callback procedure is never called.
Working with the Database Server 5-33

ECO-SQBCB
Examples
The following example program fragment, from the CAN-QRY program,
shows how to register the ECO-SQBCB routine.

1 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
2 77 CB-STAT-CODE PIC S9(9) COMP-5.
3 77 CB-TIME PIC S9(9) COMP-5 VALUE 0.
4 77 CB-NAME PIC X(12) VALUE 'CALLFUNC'.
5 77 CB-NAME-LEN PIC S9(9) COMP-5 VALUE 12.
6 77 ECOSQB-STAT-CODE PIC S9(9) COMP-5.
7 EXEC SQL END DECLARE SECTION END-EXEC.
8 *
9 PROCEDURE DIVISION.

10 RESIDENT SECTION 1.
11 *
12 MAIN.
13 .
14 .
15 .
16 REGISTER-PROC.
17 DISPLAY ' '.
18 DISPLAY 'Registering Procedure.'.
19 CALL ECO-SQBCB USING CB-TIME, CB-NAME,
20 CB-NAME-LEN, CB-STAT-CODE.

The following example program fragment, from the CALLPROC program,
shows how to unregister the ECO-SQBCB routine.

21 MOVE “ “ TO CB-NAME.
22 MOVE -1 TO CB-TIME.
23 CALL ECO-SQBCB USING CB-TIME, CB-NAME,
24 CB-NAME-LEN, CB-STAT-CODE.
5-34 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQD
ECO-SQD

Purpose
Use ECO-SQD, a run-time SQL routine, to check whether the database server
is processing an SQL task.

Syntax
CALL ECO-SQD USING STATUS.

STATUS a small integer that ECO-SQD sets to one of the following
values:

0 indicates database server not
currently processing an SQL task

-439 indicates database sever currently processing an
SQL task

Usage
The ECO-SQD routine determines whether the database server is still
processing an SQL statement. ECO-SQD returns a status code value that tells
you whether the database server finished SQL processing. You use the ECO-
SQD routine within a callback procedure registered using the ECO-SQBCB
routine. When the STATUS code indicates that the database server is currently
processing an SQL task, your callback procedure can call ECO-SQB to
interrupt SQL processing. For more information on callback procedures refer
to “Using Callback Procedures” on page 5-13.
Working with the Database Server 5-35

ECO-SQD
Example
The following example program code fragment shows how to use the
ECO-SQD routine. In the callback procedure, you call the ECO-SQD routine to
check whether the database server is currently performing SQL processing.
The ECO-SQD routine returns a status code. When the status code equals -439,
SQL processing is still active and the callback procedure calls the ECO-SQB
routine. The ECO-SQB routine terminates SQL processing. When the status
code returns 0, SQL processing is not active and the callback procedure does
not call ECO-SQB.

1 *
2 CALL ECO-SQD USING ECOSQD-STAT-CODE.
3 DISPLAY 'Status code is: ', ECOSQD-STAT-CODE.
4 IF ECOSQD-STAT-CODE IS EQUAL TO -419
5 DISPLAY 'Requesting SQL processing break.'
6 CALL ECO-SQB
7 DISPLAY 'SQL Processing cancelled in progress.'
8 ELSE
9 DISPLAY ' '

10 DISPLAY 'SQL Processing completed.'.
11 *
5-36 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQE
ECO-SQE

Purpose
Use ECO-SQE, a run-time SQL routine, to terminate all database server
connections, thereby freeing resources. You can use ECO-SQE to reduce
database overhead in programs that refer to a database only briefly and after
long intervals or that access a database only during initialization.

Syntax
CALL ECO-SQE USING STATUS.

STATUS a small integer that the ECO-SQE routine sets to one of the
following values:

<0 indicates an unsuccessful call to
ECO-SQE

0 indicates a successful call to ECO-SQE

Usage
Make sure you close all databases before you call the ECO-SQE routine. For
example, before calling ECO-SQE, issue a CLOSE DATABASE statement. When
you open a database that uses a transaction, and then call the ECO-SQE
routine, ECO-SQE rolls back any current transactions and closes the database.

ECO-SQE behaves the same as the DISCONNECT ALL statement. However, the
DISCONNECT ALL statement fails when any current transactions exist.
Working with the Database Server 5-37

ECO-SQE
Example
The following code fragment from the ECOSQE program tests the ECO-SQE
routine. The program connects to a database and asks you whether you want
to terminate the database server connections. When you choose y, the
program calls the ECO-SQE routine and terminates the database server
process. The program attempts to disconnect from the nonexistent process,
and causes an error that a GET DIAGNOSTICS statement diagnoses. The error
message proves that the ECO-SQE routine terminated the connection.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOSQE.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 MESS-TEXT PIC X(254).
18 77 REPLY PIC X(1).
19 77 EX-NUM PIC S9(9) COMP-5.
20 77 COUNT-EX PIC S9(9) VALUE 1 COMP-5.
21 77 SQLSTATE PIC X(5).
22 EXEC SQL END DECLARE SECTION END-EXEC.
23 *
24 PROCEDURE DIVISION.
25 RESIDENT SECTION 1.
26 *
27 *Begin Main routine. A connection is established
28 *to stores7 database. If the user wants to terminate the
29 *database server process, the user enters 'y'. If the user
30 *does not want to terminate the database server process, the
31 *user enters any other key. If the user selected 'y', and
32 *terminated the database server process using the ECO-SQE
33 *routine, the DISCONNECT statement generates an error that
34 *verifies the ECO-SQE routine was successful in terminating
35 *the database server process. If the user selected any other
36 *key, the program disconnects without error.
37 *
5-38 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQE
38 MAIN.
39 DISPLAY 'EXECUTE CONNECT ON stores7 DATABASE'.
40 EXEC SQL
41 CONNECT TO 'stores7'
42 END-EXEC.
43 DISPLAY 'THE SQLSTATE VALUE IS: ', SQLSTATE.
44 DISPLAY 'WANT TO TERMINATE...' AT 0105.
45 DISPLAY 'DATABASE SERVER PROCESS?' AT 0205.
46 DISPLAY 'PRESS y TO TERMINATE.' AT 0305.
47 DISPLAY 'THEN PRESS RETURN.' AT 0405.
48 DISPLAY 'OTHERWISE, PRESS ANY KEY...' AT 0505.
49 DISPLAY 'THEN PRESS RETURN.' AT 0605.
50 ACCEPT REPLY AT LINE NUMBER 7 COLUMN 5
51 WITH SPACE-FILL SIZE IS 7.
52 IF REPLY IS EQUAL TO "y"
53 PERFORM CALL-ROUTINE.
54 EXEC SQL
55 DISCONNECT 'stores7'
56 END-EXEC.
57 EXEC SQL
58 GET DIAGNOSTICS :EX-NUM=NUMBER
59 END-EXEC.
60 PERFORM ERR-CHK UNTIL COUNT-EX IS GREATER THAN EX-NUM.
61 STOP RUN.
62 *
63 *Subroutine to terminate database server process.
64 *
65 CALL-ROUTINE.
66 DISPLAY ' '.
67 DISPLAY 'ATTEMPT TO DISCONNECT FROM...'.
68 DISPLAY 'CALLING ECO-SQE TO TERMINATE...'.
69 DISPLAY 'DATABASE SERVER PROCESS.'.
70 CALL ECO-SQE.
71 DISPLAY 'DATABASE SERVER PROCESS TERMINATED.'.
72 *
73 *Subroutine to diagnose and display errors.
74 *
75 ERR-CHK.
76 EXEC SQL
77 GET DIAGNOSTICS EXCEPTION :COUNT-EX
78 :SQLSTATE=RETURNED_SQLSTATE,
79 :MESS-TEXT=MESSAGE_TEXT
80 END-EXEC.
81 DISPLAY 'THE SQLSTATE VALUE IS: ', SQLSTATE.
82 DISPLAY 'THE MESSAGE TEXT IS: ', MESS-TEXT.
83 ADD 1 TO COUNT-EX.
84 *
Working with the Database Server 5-39

ECO-SQE
Example Output
The output for the preceding code fragment shows interactive input. The
output also shows the error code and error message that proves the database
connection and process terminated.

EXECUTE CONNECT ON stores7 DATABASE
THE SQLSTATE VALUE IS: 00000
WANT TO TERMINATE THE...
DATABASE SERVER PROCESS?
PRESS y TO TERMINATE.
THEN PRESS RETURN.
OTHERWISE, PRESS ANY KEY...
THEN PRESS RETURN.
<y>
ATTEMPT TO DISCONNECT FROM...
DATABASE SERVER PROCESS.
CALLING ECO-SQE TO TERMINATE...
DATABASE SERVER PROCESS.
DATABASE SERVER PROCESS TERMINATED.
THE SQLSTATE VALUE IS: 08003
THE MESSAGE TEXT IS: Connection does not exist
5-40 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQS
ECO-SQS

Purpose
Use ECO-SQS, a run-time SQL routine, to start an implicit default connection.
An implicit default connection refers to a connection to the database server
that the INFORMIXSERVER environment variable specifies.

Syntax
CALL ECO-SQS.

Usage
You call the ECO-SQS routine only when no connections (either implicit or
explicit) exist for an application. When a connection exists, ECO-SQS does
nothing, even when you disconnect.

You can use the following CONNECT statement to establish an explicit
connection to a default database server:

CONNECT TO DEFAULT

You can also use the DATABASE statement to establish an implicit connection
to the default database server. However, the DATABASE statement also opens
a database. For more information on explicit and implicit connections, refer
to the description of the CONNECT statement in the Informix Guide to SQL:
Syntax.

ESQL/COBOL provides the ECO-SQS function for backward compatibility.
Informix encourages you to use the CONNECT statement to establish
connections.
Working with the Database Server 5-41

ECO-SQS
Example
The following code fragment from the ECOSQS program tests the ECO-SQS
routine. This example starts a database server connection using ECO-SQS. The
program attempts to start a new database connection using a CONNECT
statement. The GET DIAGNOSTICS statement diagnoses the resulting error
and proves that ECO-SQS already started a database server connection.

1 *
2 IDENTIFICATION DIVISION.
3 PROGRAM-ID.
4 ECOSQS.
5 *
6 ENVIRONMENT DIVISION.
7 CONFIGURATION SECTION.
8 SOURCE-COMPUTER. IFXSUN.
9 OBJECT-COMPUTER. IFXSUN.

10 *
11 DATA DIVISION.
12 WORKING-STORAGE SECTION.
13 *
14 *Declare variables.
15 *
16 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
17 77 MESS-TEXT PIC X(254).
18 77 REPLY PIC X(1).
19 EXEC SQL END DECLARE SECTION END-EXEC.
20 *
21 PROCEDURE DIVISION.
22 RESIDENT SECTION 1.
23 *
24 *Begin Main routine. Accept user input.
25 *'y' specifies that the user wants to start a
26 *database server process and the MAIN routine
27 *calls the ECO-SQS routine to start a database
28 *server process. 'n' specifies that no database
29 *server process is specified. A CONNECT is
30 *attempted. If a database server process already
31 *exists, an error results. Otherwise, there is
32 *no error.
33 *
34 MAIN.
35 DISPLAY 'DO YOU WANT TO START...' AT 0105.
36 DISPLAY 'A DATABASE SERVER PROCESS?' AT 0205.
37 DISPLAY 'ENTER y FOR YES.' AT 0305.
38 DISPLAY 'OTHERWISE, PRESS ANY OTHER KEY.' AT 0405.
39 DISPLAY 'THEN PRESS RETURN.' AT 0505.
40 ACCEPT REPLY AT LINE NUMBER6 COLUMN 5
5-42 INFORMIX-ESQL/COBOL Programmer’s Manual

ECO-SQS
41 WITH SPACE-FILL SIZE IS 7.
42 IF REPLY IS EQUAL TO "y"
43 CALL ECO-SQS.
44 DISPLAY ' '.
45 EXEC SQL
46 CONNECT TO DEFAULT
47 END-EXEC.
48 DISPLAY 'THE SQLSTATE CODE IS: ', SQLSTATE.
49 EXEC SQL
50 GET DIAGNOSTICS EXCEPTION 1 :MESS-TEXT=MESSAGE_TEXT
51 END-EXEC.
52 DISPLAY 'THE ERROR MESSAGE IS: ', MESS-TEXT.
53 STOP RUN.
54 *

Example Output
The following output for the preceding code fragment shows interactive
input. The output also shows the error code and error message related to the
CONNECT statement.

DO YOU WANT TO START...
A DATABASE SERVER PROCESS ?
ENTER y FOR YES.
OTHERWISE, PRESS ANY OTHER KEY
THEN PRESS RETURN.
<y>
THE SQLSTATE CODE IS: 08002
THE ERROR MESSAGE IS: Connection name in use
Working with the Database Server 5-43

6
Chapter
Dynamic Management in
INFORMIX-ESQL/COBOL
Programming with Dynamic SQL Statements 6-4
Working with a System Descriptor Area in

INFORMIX-ESQL/COBOL 6-5
Dynamic SQL Statements and Management Techniques. 6-7
When You Need Dynamic SQL Statements 6-8

The System Descriptor Area in ESQL/COBOL 6-10
Using a System Descriptor Area 6-10

Understanding System Descriptor Area Fields. 6-12
Using Data Type Values 6-13
Using Statement Type Values 6-16

SELECT Statements That Receive WHERE-Clause Values
at Run Time. 6-19

Using Host Variables 6-20
Using a System Descriptor Area 6-21

SELECT Statements in Which Select-List Values Are Determined
at Run Time. 6-24

Non-SELECT Statements That Receive Values at Run Time 6-26
Using Host Variables 6-26
Using a System Descriptor Area 6-27

Non-SELECT Statements That Do Not Receive Values at Run Time . . 6-27
Using the EXECUTE IMMEDIATE Statement 6-28

Executing Stored Procedures That Receive Arguments at Run Time . . 6-29
Creating a Stored Procedure 6-30
Executing a Stored Procedure Within Your ESQL/COBOL

Application 6-30

6-2 INFO
Dynamic SQL Program Examples 6-34
The DEMO2.ECO Program 6-35
Explanation of DEMO2.ECO 6-39
The DEMO3.ECO Program 6-49
Explanation of DEMO3.ECO 6-54
RMIX-ESQL/COBOL Programmer’s Manual

ynamic management in INFORMIX-ESQL/COBOL involves the use
of dynamic SQL statements. You do not write a dynamic SQL statement as
part of your program. Instead, you supply a dynamic SQL statement to your
program when you execute that program.

The Informix Guide to SQL: Syntax illustrates and describes the following SQL
statements used for dynamic management in ESQL/COBOL:

■ ALLOCATE DESCRIPTOR

■ FREE

■ DEALLOCATE DESCRIPTOR

■ GET DESCRIPTOR

■ DECLARE

■ OPEN

■ DESCRIBE

■ PREPARE

■ EXECUTE

■ PUT

■ EXECUTE IMMEDIATE

■ SET DESCRIPTOR

■ FETCH

Programming with dynamic SQL in ESQL/COBOL requires that you use a
system descriptor area described in “The System Descriptor Area in
ESQL/COBOL” on page 6-10. Also refer to the discussion of dynamic SQL
and other aspects of using SQL in programs in the Informix Guide to SQL:
Tutorial.

This chapter discusses general concepts of dynamic management and
includes two annotated example programs that use dynamic SQL statements.

D

Dynamic Management in INFORMIX-ESQL/COBOL 6-3

Programming with Dynamic SQL Statements
Programming with Dynamic SQL Statements
Normally, you embed explicit SQL statements in your ESQL/COBOL program
to perform predetermined activities on your database. However, advanced
applications or instances could exist that do not know the precise SQL
statement at compile time, as described in the following examples:

■ Interactive programs, where you enter a query from the keyboard at
run time

■ Programs intended to work with different databases whose struc-
tures can vary

In such situations, you must work with dynamically defined SQL statements
(also known as dynamic management statements). The Informix Guide to SQL:
Syntax illustrates these kinds of SQL statements, that are outlined later in this
chapter.

In an ESQL/COBOL program, an SQL statement passed to the PREPARE
statement at run time cannot refer directly to host variables because the
program has already been compiled. You must, therefore, insert a question
mark (?) wherever you intended to put a host variable. These question marks
indicate the parameters of the statement(s). For more information on host
variables, refer to “Using Host Variables in SQL Statements” on page 1-21
and “Choosing Data Types for Host Variables” on page 2-4.

Your database server parses INFORMIX-ESQL/COBOL statements at run time.
When your program uses the same statement many times, dynamic SQL
statements allow you to prepare the statement once and then execute it with
the values that change at run time.

The following ESQL/COBOL code fragment prepares a DELETE statement
and executes that statement until C-NUM equals zero:

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

77 C-NUM PIC S9(4).
..

EXEC SQL END DECLARE SECTION END-EXEC.
..

EXEC SQL
PREPARE CUST_ID FROM

'DELETE FROM CUSTOMER WHERE CUSTOMER_NUM = ?
'

END-EXEC.
6-4 INFORMIX-ESQL/COBOL Programmer’s Manual

Working with a System Descriptor Area in INFORMIX-ESQL/COBOL
DISPLAY "ENTER CUSTOMER NUMBER OR 0 TO EXIT".
ACCEPT C-NUM.
PERFORM PROCESS-DELETE UNTIL C-

NUM IS EQUAL TO ZERO.
...

PROCESS-DELETE.
EXEC SQL

EXECUTE CUST_ID USING :C-NUM
END-EXEC.
DISPLAY "ENTER CUSTOMER NUMBER".
ACCEPT C-NUM.

In the preceding code fragment, the program evaluates the prepared
statement only once, outside the performed paragraph. For an alternative, do
not prepare any statement and put the DELETE statement in the performed
paragraph. When the performed paragraph contains a DELETE statement, the
database server parses the DELETE statement each time the database server
encounters that statement.

You cannot execute SELECT statements. The DECLARE statement uses the
statement identifier from the PREPARE statement to associate a cursor with the
prepared SELECT statement. Use the USING option of the OPEN statement to
communicate parameters for the SELECT statement.

Working with a System Descriptor Area in
INFORMIX-ESQL/COBOL
Various dynamic SQL statements let you allocate space in memory using a
system descriptor area.

Use the DESCRIBE statement to obtain information about the resulting
columns in a cursor specification. The DESCRIBE statement lets you
determine at run time the type of prepared statement and the number and
types of data that the prepared query returns when executed.

The ALLOCATE DESCRIPTOR statement lets you allocate a system descriptor
area and specify its size. Use the DEALLOCATE DESCRIPTOR statement to
release the memory associated with a system descriptor area.
Dynamic Management in INFORMIX-ESQL/COBOL 6-5

Working with a System Descriptor Area in INFORMIX-ESQL/COBOL
You can assign values to a system descriptor and retrieve the information
stored in a system descriptor area through the SET DESCRIPTOR and GET
DESCRIPTOR statements, respectively. You must declare the host variables
used for the GET DESCRIPTOR and SET DESCRIPTOR statements in the BEGIN
DECLARE SECTION of an ESQL/COBOL program with the predefined data
type declarations shown in Figure 6-1.

Figure 6-1
Predefined Data Types and Corresponding

COBOL Declarations

For example, to store an integer TYPE value from the system descriptor area
in a host variable, you must declare the host value as a corresponding COBOL
integer, as shown in the following example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
77 VAR-1 PIC S9(9) COMP-5.
EXEC SQL END DECLARE SECTION END-EXEC.

Predefined Data Type COBOL Data Type

SQLCHAR(n) PIC X(10)

SQLNCHAR(n) PIC X(10)

SQLINT PIC S9(9) USAGE COMP

SQLSMINT PIC S9(4) USAGE COMP

SQLDATE PIC S9(9) USAGE COMP

SQLDECIMAL(p,n) * PIC S9(m)V9(n) USAGE COMP

SQLMONEY(p,n) * PIC S9(m)V9(n) USAGE COMP

DATE_TYPE PIC X(10)

VARCHAR(n) PIC X(n)

NVARCHAR(n) PIC X(n)

FILE(n) PIC X(n)

*(m, in PIC S9(m), equals p-n)
6-6 INFORMIX-ESQL/COBOL Programmer’s Manual

Dynamic SQL Statements and Management Techniques
After you allocate a descriptor, you could set the system descriptor TYPE
value of an integer as shown in the following example:

EXEC SQL SET DESCRIPTOR 'spdesc' VALUE 2 TYPE = 5 END-EXEC.

Then, to use the VAR-1 host variable in a GET DESCRIPTOR statement, you
could use the following syntax to put the TYPE value into VAR-1:

EXEC SQL GET DESCRIPTOR 'spdesc' VALUE 2
:VAR-1 = TYPE END-EXEC.

The following list contains additional usage notes for the preceding data
types:

■ Use SQLDATE to store Julian values. Use DATE_TYPE to hold date
values of the format mm/dd/yyyy.

■ Use FILE to hold the name of the file into that you load or store a TEXT
or BYTE column.

■ For MF COBOL/2, substitute COMP-5 for COMP. For RM/COBOL-85,
substitute COMP-1 for COMP.

You can also use a system descriptor area to provide a storage area for values
returned from a FETCH statement. For more information on system
descriptor fields and values, refer to “The System Descriptor Area in
ESQL/COBOL” on page 6-10. For more information on the ALLOCATE
DESCRIPTOR, SET DESCRIPTOR, and GET DESCRIPTOR statements, refer to the
Informix Guide to SQL: Syntax.

Dynamic SQL Statements and Management Techniques
The following list outlines the basic process for using dynamic SQL
statements in your ESQL/COBOL program:

1. Your ESQL/COBOL program assembles the text of an SQL statement
as a character string in a program variable.

2. Your program executes a PREPARE statement that asks the database
server to examine the statement text and prepare it for execution.

3. Your program executes the prepared statement using the EXECUTE
statement.

4. Your program uses the FREE statement to explicitly free resources
that the prepared statement identifier holds.
Dynamic Management in INFORMIX-ESQL/COBOL 6-7

When You Need Dynamic SQL Statements
Optionally, you can use a DESCRIBE statement on any prepared statement to
determine the type of statement you prepared. The following prepared
outcomes can occur after a DESCRIBE statement:

■ If the value in SQLCODE OF SQLCA equals 0, a SELECT statement
without an INTO TEMP clause is prepared.

■ If the value of SQLCODE OF SQLCA equals a positive number, some
other type of statement is prepared.

To determine the type of statement you prepared, you can test the value of
SQLCODE OF SQLCA against a set of predefined integers that identify
statement types. Refer to “Using Statement Type Values” on page 6-16 for
more information about using the defined constants.

When You Need Dynamic SQL Statements
Dynamic SQL statements, more complex than nondynamic SQL statements,
possess special requirements. Under the following circumstances, you must
use a system descriptor area when you work with dynamically defined SQL
statements in ESQL/COBOL:

■ In a SELECT statement that requires input at run time to provide
information for the WHERE clause

Either you know or do not know the number or data type of the
parameters in the WHERE clause. For information on this type of
statement, sometimes known as a parameterized SELECT statement,
refer to “SELECT Statements That Receive WHERE-Clause Values at
Run Time” on page 6-19.

■ In a SELECT statement where you do not know either the number or
the data types of the columns or expressions in the select list, but you
do know that the SELECT statement does contain a WHERE clause

For information on this type of statement, sometimes known as a
non-parameterized SELECT statement, refer to “SELECT Statements
in Which Select-List Values Are Determined at Run Time” on
page 6-24.
6-8 INFORMIX-ESQL/COBOL Programmer’s Manual

When You Need Dynamic SQL Statements
■ In a statement other than SELECT, such as INSERT, where you do not
know the number or data type of the input parameters

For information on this type of statement, sometimes known as a
parameterized non-SELECT statement, refer to “Non-SELECT State-
ments That Receive Values at Run Time” on page 6-26.

■ Sometimes a statement matches these conditions:

❑ Not a SELECT statement

❑ Uses no input parameters

❑ Not known until run time

For information on this type of statement, sometimes known as a
non-parameterized non-SELECT statement, refer to “Non-SELECT
Statements That Do Not Receive Values at Run Time” on page 6-27.

The first three statements in the preceding list require you to manage memory
space for variables at run time.

If you use any of the four preceding types of statements, you must
understand the concepts regarding the system descriptor area. You can use
the system descriptor area to hold dynamic information. When you use a
system descriptor area, you implement a language-independent method of
dynamic management that makes use of the ALLOCATE DESCRIPTOR, GET
DESCRIPTOR, and SET DESCRIPTOR statements in SQL. For more information
about the system descriptor area, refer to “The System Descriptor Area in
ESQL/COBOL” on page 6-10.

Tip: If you do not use any of the four preceding types of statements, you can skip the
rest of this chapter.
Dynamic Management in INFORMIX-ESQL/COBOL 6-9

The System Descriptor Area in ESQL/COBOL
The System Descriptor Area in ESQL/COBOL
In ESQL/COBOL, you can allocate memory dynamically using a system
descriptor area.

You use the system descriptor area when you use the ALLOCATE
DESCRIPTOR, GET DESCRIPTOR, and SET DESCRIPTOR statements. These
statements, described in the following list, let you determine the contents of
a prepared statement at run time and allocate memory dynamically. They
also let you create WHERE clauses for statements that receive WHERE-clause
values at run time.

■ The ALLOCATE DESCRIPTOR statement allocates memory for a
system descriptor area that a descriptor identifies. It creates a place
in memory to hold information obtained by a DESCRIBE statement or
information about the WHERE clause of a statement. (The
DEALLOCATE DESCRIPTOR statement frees the allocated system
descriptor area.)

■ The GET DESCRIPTOR statement allows you to determine how many
values were described in a system descriptor area, determine the
characteristics of each column or expression described in the system
descriptor area, or copy a value out of the system descriptor area and
into a host variable after a FETCH statement.

■ The SET DESCRIPTOR statement assigns values to a system descriptor
area that a descriptor identifies.

The DESCRIBE statement returns information about a prepared statement
before you execute it. You store that information in a system descriptor area.

Using a System Descriptor Area
Dynamic SQL lets you allocate space in memory with a system descriptor
area. Thus, you can use a system descriptor area and write code that supports
X/Open standards.

You can allocate a system descriptor area that a descriptor or descriptor variable
identifies and specify its size with the ALLOCATE DESCRIPTOR statement.
You can use only system descriptor areas that were allocated with the
ALLOCATE DESCRIPTOR statement in a DESCRIBE statement in ESQL/COBOL.
6-10 INFORMIX-ESQL/COBOL Programmer’s Manual

Using a System Descriptor Area
INFORMIX-ESQL/COBOL lets you take the following actions:

■ Direct the output of a DESCRIBE statement on a SELECT or INSERT
statement to a system descriptor area

■ Set the contents of a system descriptor explicitly

■ Retrieve information stored in such system descriptor areas, execute
a GET DESCRIPTOR statement following a DESCRIBE statement

Use the SET DESCRIPTOR statement to assign values to an allocated system
descriptor area. The DESCRIBE and SET DESCRIPTOR statements automati-
cally allocate space for the DATA field of the system descriptor area.

You can use the system descriptor area to provide a storage area for values
returned from a FETCH statement. Release memory associated with the
system descriptor area with the DEALLOCATE DESCRIPTOR statement.

Other statements that support the use of a system descriptor area include
EXECUTE, OPEN, and PUT. For more information on dynamic SQL and system
descriptors, refer to the discussion of ALLOCATE DESCRIPTOR, DEALLOCATE
DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR, DESCRIBE, FETCH,
EXECUTE, OPEN, and PUT in the Informix Guide to SQL: Syntax.

A system descriptor area has a field for the count of values returned by a
SELECT statement or inserted into an INSERT statement. It also has a set of
fields for each value or item entered or returned. Figure 6-2 illustrates a
descriptor area for two values.

Figure 6-2
A System Descriptor
Area for Two Values

Value 1

Value 2

COUNT = 2
DATA
TYPE
LENGTH
INDICATOR
NAME
SCALE
PRECISION
NULLABLE
IDATA
ITYPE
ILENGTH
DATA
TYPE
LENGTH
INDICATOR
NAME
SCALE
PRECISION
NULLABLE
IDATA
ITYPE
ILENGTH
Dynamic Management in INFORMIX-ESQL/COBOL 6-11

Using a System Descriptor Area
Understanding System Descriptor Area Fields

The following alphabetically ordered list describes the standard fields of the
system descriptor area:

COUNT represents the number of VALUES, items, or occurrences in
the system descriptor area. For example, after you set
ALLOCATE DESCRIPTOR, COUNT holds number of occur-
rences. DESCRIBE sets COUNT to the number of values in
the SELECT or INSERT list. (You can obtain this number
using GET DESCRIPTOR.). When you use a system
descriptor area to hold parameters for a PUT, OPEN, or
EXECUTE statement, you must set the COUNT field to the
number of parameters.

DATA represents the data. DATA can represent a host variable or
a numeric literal, character string literal, DATETIME lit-
eral, or INTERVAL literal. This field does not represent a
standard X/Open field and makes a warning message
appear in X/Open mode.

IDATA represents the user-defined indicator data or the name of
a host variable that contains indicator data for the DATA
field. This field does not represent a standard X/Open
field and makes a warning message appear in X/Open
mode.

ILENGTH represents the length, in bytes, of the user-defined indica-
tor. This field does not represent a standard X/Open field
and makes a warning message appear in X/Open mode.

INDICATOR represents a short integer indicator variable. INDICATOR
can contain two values: 0 means non-null data exists in
the DATA field, and -1 means null data exists in the DATA
field.

ITYPE represents the data type for a user-defined, short-integer
indicator. Figure 6-3 on page 6-14 and Figure 6-4 on
page 6-14 define the integer correspondences.

LENGTH represents a short integer that gives the size in bytes of
CHAR type data, the encoded qualifiers of DATETIME or
INTERVAL data, or the size of a DECIMAL or MONEY
value.
6-12 INFORMIX-ESQL/COBOL Programmer’s Manual

Using a System Descriptor Area
NAME represents a character string containing the column name
or display label you transfer.

NULLABLE specifies whether a resulting column can contain a null
value after a you execute a DESCRIBE statement. The
value 1 means the column allows null values, and the
value 0 means the column does not allow null values.

Before you execute an EXECUTE statement or a dynamic
OPEN statement, you must set NULLABLE to 1 to indicate
that the INDICATOR field specifies an indicator value, and
to 0 when you do not specify an indicator value. (When
executing a dynamic FETCH statement, your
ESQL/COBOL program ignores the NULLABLE field.)

PRECISION you define this field only for the DECIMAL or MONEY
data type. After you execute a DESCRIBE statement,
PRECISION contains the precision of the column. Other-
wise, you must set PRECISION to indicate the precision of
the value in the DATA field.

SCALE you define this field only for the DECIMAL or MONEY
data type. After you execute a DESCRIBE statement,
SCALE contains the scale of the column. In a SET
DESCRIPTOR statement, you must set SCALE to indicate
the scale of the value in the DATA field.

TYPE represents a short integer corresponding to the data type
you transfer. Figure 6-3 and Figure 6-4 define the integer
correspondences.

Using Data Type Values

Within an INFORMIX-ESQL/COBOL program that uses dynamically defined
SQL statements, you can use the constant integer values shown in Figure 6-3
and Figure 6-4. Use these language-independent constants when you
analyze the information a DESCRIBE statement returns to a system descriptor
area or when you set the TYPE in a SET DESCRIPTOR statement.

Figure 6-3 and Figure 6-4 show the values for TYPE and ITYPE in X/Open
mode and in standard mode.
Dynamic Management in INFORMIX-ESQL/COBOL 6-13

Using a System Descriptor Area
Figure 6-3
Values for the TYPE and ITYPE Fields for X/Open SQL

Figure 6-4
Values for the TYPE and ITYPE Fields When Not Using X/Open SQL

Data Type Integer

CHARACTER 1

DECIMAL 3

INTEGER 4

SMALLINT 5

FLOAT 6

Data Type Integer

CHARACTER 0

DECIMAL 5

INTEGER 2

SMALLINT 1

FLOAT 3

SMALLFLOAT 4

SERIAL 6

DATE 7

MONEY 8

DATETIME 10

BYTE 11

TEXT 12

 (1 of 2)
6-14 INFORMIX-ESQL/COBOL Programmer’s Manual

Using a System Descriptor Area
The following code fragment from the SETD program shows how to set and
use an INTEGER TYPE field in SET DESCRIPTOR and GET DESCRIPTOR
statements:

1 *
2 *This program, SETD, shows how to allocate a
3 *descriptor, set a descriptor, get a descriptor
4 *and display the contents of a descriptor.
5 *
6 IDENTIFICATION DIVISION.
7 PROGRAM-ID.
8 SETD.
9 *

10 ENVIRONMENT DIVISION.
11 CONFIGURATION SECTION.
12 SOURCE-COMPUTER. IFXSUN.
13 OBJECT-COMPUTER. IFXSUN.
14 *
15 DATA DIVISION.
16 WORKING-STORAGE SECTION.
17 *
18 *Display variable.
19 *
20 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
21 77 INT-TYPE PIC S9(9) COMP-5.
22 EXEC SQL END DECLARE SECTION END-EXEC.
23 *
24 PROCEDURE DIVISION.
25 RESIDENT SECTION 1.
26 *
27 *Begin Main routine. Allocate and set a
28 *descriptor. Move the contents of a
29 *descriptor into a host variable and
30 *display the host variable.
31 *

VARCHAR 13

INTERVAL 14

FILE 116

Data Type Integer

 (2 of 2)
Dynamic Management in INFORMIX-ESQL/COBOL 6-15

Using a System Descriptor Area
32 MAIN.
33 EXEC SQL ALLOCATE DESCRIPTOR 'desc_100'
34 WITH MAX 5 END-EXEC.
35 EXEC SQL
36 SET DESCRIPTOR 'desc_100' VALUE 2 TYPE = 5
37 END-EXEC.
38 EXEC SQL
39 GET DESCRIPTOR 'desc_100' VALUE 2
40 :INT-TYPE = TYPE
41 END EXEC.
42 DISPLAY 'The type value is: ', INT-TYPE.
43 STOP RUN.

Using Statement Type Values

After you use the DESCRIBE statement, the database server sets SQLCODE OF
SQLCA to a positive integer value, that indicates the type of statement that
was described. In other words, SQLCODE OF SQLCA indicates whether the
statement was INSERT, SELECT, CREATE TABLE, or another kind of statement.

To determine the kind of statement described, check the value of SQLCODE
OF SQLCA against a predefined set of values. Figure 6-5 lists the predefined
integer constants for types of SQL statements.

Figure 6-5
Integer Constants for Types of SQL Statement

Statement Value

SELECT (no INTO TEMP clause) 0

DATABASE 1

Internal use only 2

SELECT INTO 3

UPDATE... WHERE 4

DELETE... WHERE 5

INSERT 6

UPDATE... WHERE CURRENT OF 7

DELETE... WHERE CURRENT OF 8

 (1 of 4)
6-16 INFORMIX-ESQL/COBOL Programmer’s Manual

Using a System Descriptor Area
Internal use only 9

LOCK TABLE 10

UNLOCK TABLE 11

CREATE DATABASE 12

DROP DATATBASE 13

CREATE TABLE 14

DROP TABLE 15

CREATE INDEX 16

DROP INDEX 17

GRANT FRAGMENT 18

REVOKE FRAGMENT 19

RENAME TABLE 20

RENAME COLUMN 21

CREATE AUDIT 22

DROP AUDIT 25

RECOVER TABLE 26

Internal use only 27-28

ALTER TABLE 29

UPDATE STATISTICS 30

CLOSE DATABASE 31

DELETE (no WHERE clause) 32

UPDATE (no WHERE clause) 33

BEGIN WORK 34

COMMIT WORK 35

Statement Value

 (2 of 4)
Dynamic Management in INFORMIX-ESQL/COBOL 6-17

Using a System Descriptor Area
ROLLBACK WORK 36

Internal use only 37

START DATABASE 38

ROLL FORWARD 39

CREATE VIEW 40

DROP VIEW 41

Internal use only 42

CREATE SYNONYM 43

DROP SYNONYM 44

CREATE TEMP TABLE 45

SET LOCK MODE 46

ALTER INDEX 47

SET ISOLATION, SET TRANSACTION 48

SET LOG 49

SET EXPLAIN 50

CREATE SCHEMA 51

SET OPTIMIZATION 52

CREATE PROCEDURE 53

DROP PROCEDURE 54

SET CONSTRAINTS 55

EXECUTE PROCEDURE 56

SET DEBUG FILE TO 57

CREATE OPTICAL CLUSTER 58

ALTER OPTICAL CLUSTER 59

Statement Value

 (3 of 4)
6-18 INFORMIX-ESQL/COBOL Programmer’s Manual

SELECT Statements That Receive WHERE-Clause Values at Run Time
SELECT Statements That Receive WHERE-Clause
Values at Run Time
In SELECT statements that receive WHERE-clause values at run time, you do
not know the number or data type of the parameters in the WHERE clause.
You must supply the input variables at run time. Because DESCRIBE state-
ments examine only the list of column names or expressions in the SELECT
statement, they do not tell you about parameters in the WHERE clauses.

You must know the number of parameters in the SELECT statement and their
data types. Unless you are writing a general-purpose, interactive interpreter,
you usually know this information. When you do not know it, you must
write code that determines not only how many question marks (?) appear in
the dynamic query but also to what data type they belong.

DROP OPTICAL CLUSTER 60

RESERVE (optical) 61

RELEASE (optical) 62

SET MOUNTING TIMEOUT 63

UPDATE STATISTICS... for procedure 64

Defined for Kanji version only 65-66

Reserved 67-69

CREATE TRIGGER 70

DROP TRIGGER 71

Reserved 72

SET 76

START VIOLATIONS TABLE 77

STOP VIOLATIONS TABLE 78

Statement Value

 (4 of 4)
Dynamic Management in INFORMIX-ESQL/COBOL 6-19

Using Host Variables
When you know the number of parameters and their data types at compile
time, you can declare appropriate host variables to receive the parameter
values and run the query using those values.

When you determine the number of parameters and their data types at
compile time, you use a system descriptor area to pass data to the query.

Using Host Variables
Perform the following steps to use host variables with a SELECT statement
that receives WHERE-clause values at run time:

1. Declare a host variable for each parameter in the WHERE clause of the
SELECT statement.

2. Prepare the SELECT statement. It must contain a question mark (?) for
each missing value in the WHERE clause.

3. Use the DECLARE statement to associate a cursor with the prepared
SELECT statement.

4. Assign a value to the host variable for each parameter. (Usually, the
application obtains these values interactively.)

5. Use the OPEN statement with the USING clause to associate the host
variables (and their contents) with the question marks (?) in the pre-
pared SELECT statement.

6. Use the FETCH statement to get the first set of values that the pre-
pared SELECT returns. Repeat the fetch until the database server
returns no more rows.

7. Close the cursor using the CLOSE statement.

In the following example, the host variables that correspond to the param-
eters in the SELECT statement include only HOSTVAR1, HOSTVAR2, and
HOSTVAR3. Execute the OPEN statement as shown in this example:

 EXEC SQL INCLUDE SQLCA END-EXEC.
 ...
* DECLARE PARAMETER VARIABLES

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 05 HOSTVAR1 PIC S9(9) COMP-5.
 05 HOSTVAR2 PIC S9(9) COMP-5.
 05 HOSTVAR3 PIC S9(9) COMP-5.

 EXEC SQL END DECLARE SECTION END-EXEC.
6-20 INFORMIX-ESQL/COBOL Programmer’s Manual

Using a System Descriptor Area
* MAKE STORES7 THE CURRENT DATABASE

 EXEC SQL CONNECT TO 'STORES7' END-EXEC.

* PREPARE THE SELECT STATEMENT

 EXEC SQL PREPARE Q_ID FROM
'SELECT ORDER_NUM, CUSTOMER_NUM

FROM ORDERS
WHERE ORDER_DATE = ?

OR PAID_DATE = ?
OR SHIP_DATE = ?'

 END-EXEC.

* ASSOCIATE Q_CURSOR WITH SELECT STATEMENT

 EXEC SQL DECLARE Q_CURSOR CURSOR FOR Q_ID END-EXEC.

* THIS SECTION OF THE PROGRAM WOULD
* ASSIGN VALUES TO HOSTVAR1, HOSTVAR2, AND HOSTVAR3

* OPEN Q_CURSOR TO CREATE THE ACTIVE SET

 EXEC SQL
OPEN Q_CURSOR USING :HOSTVAR1, :HOSTVAR2, :HOSTVAR3

 END-EXEC.

Using a System Descriptor Area
Your code must include the following steps to handle a SELECT statement
that receives WHERE-clause values at run time. Consider the first four steps
common to all SELECT statements whether or not they contain a WHERE
clause.

1. Declare host variables to hold the data obtained from the user
interactively.

2. Prepare the SELECT statement (using the PREPARE statement), and
give it a statement identifier. The SELECT statement must contain a
question mark (?) for each missing value in the WHERE clause. In the
following example, the statement identifier could possibly represent
QID:
EXEC SQL
PREPARE QID FROM
'SELECT * FROM CUSTOMER WHERE LNAME > ?'
END-EXEC.
Dynamic Management in INFORMIX-ESQL/COBOL 6-21

Using a System Descriptor Area
3. Declare a cursor for the prepared statement identifier (for example,
DEMOCURSOR). You must associate all dynamically defined SELECT
statements with a declared cursor. For example, the following state-
ment declares the cursor DEMOCURSOR for QID:
EXEC SQL DECLARE DEMOCURSOR CURSOR FOR QID END-EXEC.

4. Allocate a descriptor using the ALLOCATE DESCRIPTOR statement.
Provide a name for the descriptor area and indicate the maximum
number of items that can exist in the select list of the query. When
you do not provide a maximum, ESQL/COBOL allocates space for
100 returned items. The following statement allocates a descriptor
named DESC, that provides room for up to a four-item select list:
EXEC SQL

ALLOCATE DESCRIPTOR 'DESC' WITH MAX 4
END-EXEC.

5. Your COBOL code must analyze the WHERE clause of the SELECT
statement to determine how many and what type of parameters
reside in the WHERE clause.

6. Once you determine the number of question marks in the query, you
must use an ALLOCATE DESCRIPTOR statement to allocate a descrip-
tor large enough to handle the filter variables. When you allocate a
descriptor of sufficient size in Step 4, you can use that.

7. Issue a SET DESCRIPTOR statement for each of the question marks
(filter values) in the SELECT statement. The SET DESCRIPTOR state-
ment must set the TYPE and VALUE fields of the descriptor area.
When you specify the TYPE field as CHAR or VARCHAR, you must
also provide a value for the LENGTH field. The other fields are
optional.

The following statement sets the first value in the descriptor area for
a character value with a value assigned from the HOSTCHAR host
variable:
EXEC SQL
SET DESCRIPTOR 'DESC' VALUE 1

TYPE = 0,
LENGTH = 15,
DATA = :HOSTCHAR

END-EXEC.

Important: When you use X/Open code (and compiling with the -xopen flag), use the
language-independent integer values for the X/Open environment to set the TYPE
field. Refer to “Using Data Type Values” on page 6-13.
6-22 INFORMIX-ESQL/COBOL Programmer’s Manual

Using a System Descriptor Area
8. Once you set all the necessary information for each VALUE, open a
cursor using the descriptor. For the preceding SET DESCRIPTOR state-
ment, you can use the following OPEN statement:
EXEC SQL
OPEN DEMOCURSOR USING SQL DESCRIPTOR 'DESC'
END-EXEC.

9. Determine the contents of the select list of the query. To do this, use
the DESCRIBE statement with the descriptor that you allocated for the
returned values. For example, the following statement describes the
prepared query QID into the DESC descriptor.
EXEC SQL

DESCRIBE QID USING SQL DESCRIPTOR 'DESC'
END-EXEC.

10. To use the GET DESCRIPTOR statement to determine the count of
values in the select list, look at the COUNT field of the descriptor. For
example, the following statement puts the count of the values in the
select list into the COUNT host variable.
EXEC SQL

GET DESCRIPTOR 'DESC' :COUNT = COUNT
END-EXEC.

11. Determine the type, length, name, and other information about each
of the values described into the descriptor as your program needs
such information for formatting or processing. For example, to deter-
mine the type of the third value in a select list, issue the following
statement:
EXEC SQL
GET DESCRIPTOR 'DESC' VALUE 3 :TYPE_INT = TYPE
END-EXEC.

12. Fetch each row of values returned with the SELECT statement in a
loop until the program finds no more rows (SQLCODE OF SQLCA =
SQLNOTFOUND). After each FETCH statement, use the GET DESCRIP-
TOR statement on each value in the select list to load the contents of
the DATA field into an appropriate host variable for your program to
use. For example, the following statement copies the data for the
second value into the host variable RESULT:
EXEC SQL
GET DESCRIPTOR 'DESC' VALUE 2 :RESULT = DATA
END-EXEC.

13. After the program fetches all the rows, close the cursor using the
CLOSE statement.
Dynamic Management in INFORMIX-ESQL/COBOL 6-23

SELECT Statements in Which Select-List Values Are Determined at Run Time
SELECT Statements in Which Select-List Values Are
Determined at Run Time
These kinds of statements occur when you know neither the number nor the
data types of the members of the select list, nor do you know the list of column
names or expressions in the SELECT statement.

In nondynamic SELECT statements, ESQL/COBOL places the values returned
from the query into host variables listed in an INTO clause. When you create
a SELECT statement interactively after you compile your program, you
cannot use an INTO clause because the host variables are not directly
available. Instead, you must use the system descriptor area to hold the
selected values. Follow these steps to program the code that uses a SELECT
statement, that determines select-list values at run time:

1. Prepare the SELECT statement, using the PREPARE statement, and
give it a statement identifier (for example, QID).

2. Declare a cursor for the prepared statement identifier (such as
DEMOCURSOR). You must associate all dynamically defined SELECT
statements with a declared cursor. For example, the following
statement declares the cursor DEMOCURSOR for QID:
EXEC SQL DECLARE DEMOCURSOR CURSOR FOR QID END-EXEC.

3. Allocate a descriptor using the ALLOCATE DESCRIPTOR statement
and provide a name for the descriptor area. Use the WITH MAX
clause to indicate the maximum number of items that can reside in
the select list of the query. When you do not provide a maximum,
ESQL/COBOL allocates space for 100 returned items. For example,
the following statement allocates a descriptor named DESC, that
provides room for up to a four-item select list:
EXEC SQL

ALLOCATE DESCRIPTOR 'DESC' WITH MAX 4
END-EXEC.

4. Open the cursor, as shown in the following example:
EXEC SQL OPEN DEMOCURSOR END-EXEC.

Important: If the SELECT statement has a WHERE clause, your program must also
handle the WHERE clause. Refer to page 6-19 for information on handling SELECT
statements that receive WHERE-clause values at run time.
6-24 INFORMIX-ESQL/COBOL Programmer’s Manual

SELECT Statements in Which Select-List Values Are Determined at Run Time
5. Determine the contents of the select list of the query. To do this, use
the DESCRIBE statement with the descriptor that you allocated for the
returned values. For example, the following statement describes the
prepared query QID into the DESC descriptor:
EXEC SQL

DESCRIBE QID USING SQL DESCRIPTOR 'DESC'
END-EXEC.

6. To use the GET DESCRIPTOR statement to determine the count of
values in the select list, look at the COUNT field of the descriptor. For
example, the following statement puts the count of the values in the
select list into the COUNT host variable:
EXEC SQL

GET DESCRIPTOR 'DESC' :COUNT = COUNT
END-EXEC.

7. Determine the type, length, name, and other information about each
of the values described into the descriptor as your program needs
such information for formatting or processing. For example, to deter-
mine the type of the third value in a select list, issue the following
statement:
EXEC SQL
GET DESCRIPTOR 'DESC' VALUE 3 :TYPE_INT = TYPE
END-EXEC.

8. Fetch each row of values returned with the SELECT statement in a
loop until the program finds no more rows (SQLCODE OF SQLCA =
SQLNOTFOUND). After each FETCH statement, use the GET DESCRIP-
TOR statement on each value in the select list to load the contents of
the DATA field into an appropriate host variable for your program to
use. For example, the following statement copies the data for the sec-
ond value into the host variable RESULT:
EXEC SQL
GET DESCRIPTOR 'DESC' VALUE 2 :RESULT = DATA
END-EXEC.

9. After the program fetches all the rows, close the cursor using the
CLOSE statement.
Dynamic Management in INFORMIX-ESQL/COBOL 6-25

Non-SELECT Statements That Receive Values at Run Time
Non-SELECT Statements That Receive Values at Run
Time
ESQL/COBOL treats non-SELECT statements that possess an unknown
number or data type of the input parameters essentially the same as SELECT
statements that receive WHERE-clause values at run time. One difference
exists in that you use the EXECUTE statement rather than the OPEN statement
to indicate the parameters.

The DELETE and UPDATE statements can both contain a WHERE clause.
Although similar to using a SELECT with a WHERE clause, your program
associates the parameters to the prepared statement in an EXECUTE
statement rather than in an OPEN statement. When you dynamically use a
DELETE or UPDATE statement, your program must follow the steps given in
the following list:

1. Prepare the dynamic non-SELECT statement using the PREPARE
statement.

2. Describe the statement and check the value of SQLWARN4 in the
SQLCA record. When SQLWARN4 contains a W, the DELETE or UPDATE
statement does not contain a WHERE clause and, when executed, the
program deletes or updates all the rows in the table.

3. Execute the prepared statement using the EXECUTE statement with
the appropriate USING clause. You can use host variables or a system
descriptor area to hold the parameters.

Using Host Variables
If you know the number of parameters and their data types at compile time,
you can execute an SQL statement that you prepared using the names of the
host variables that hold the parameter data. For example, use the following
statement to run a DELETE statement or an UPDATE statement that requires
three parameters, with the parameter values stored in :HOSTVAR1,
:HOSTVAR2, and :HOSTVAR3, and that was prepared with the identifier
STATEID:

EXEC SQL
EXECUTE STATEID USING :HOSTVAR1, :HOSTVAR2, :HOSTVAR3

END-EXEC.
6-26 INFORMIX-ESQL/COBOL Programmer’s Manual

Using a System Descriptor Area
Using a System Descriptor Area
You can use a system descriptor area to hold the information about the
parameters by performing the steps in the following list:

1. Allocate a descriptor large enough to hold the parameters with the
ALLOCATE DESCRIPTOR statement.
EXEC SQL

ALLOCATE DESCRIPTOR 'UP_DESC' WITH MAX 10
END-EXEC.

2. For each parameter, use the SET DESCRIPTOR statement to set the
TYPE of each parameter and associate the host variable that holds the
data with the descriptor field. The following example sets the second
value in the UP_DESC descriptor to an integer value that receives its
data from the host variable called :H_INT. Use this value for the
second question mark (?) in the WHERE clause.
EXEC SQL
SET DESCRIPTOR 'UP_DESC' VALUE 2

TYPE = 2, DATA = :H_INT
END-EXEC.

3. Use the EXECUTE statement with the USING SQL DESCRIPTOR clause.
For example, the following statement associates information about
the parameters held in UP_DESC with the prepared statement called
STATEID:
EXEC SQL
EXECUTE STATEID USING SQL DESCRIPTOR 'UP_DESC'
END-EXEC.

Non-SELECT Statements That Do Not Receive Values
at Run Time
In many cases, you can assemble a statement at run time using a simple
process. When that statement is not a SELECT statement, and you know the
basic structure of the statement and all its components when you write your
program, you can simply prepare and execute the statement.
Dynamic Management in INFORMIX-ESQL/COBOL 6-27

Using the EXECUTE IMMEDIATE Statement
For example, you could write a general-purpose deletion program that
works on any table. Your program performs the following steps:

1. Your program prompts the user for the name of the table and the text
of the WHERE clause and puts the information into host variables
such as :TABNAME and :SEARCH_CONDITION.

2. It concatenates four components (:DELETE FROM, :TABNAME,
WHERE, and :SEARCH_CONDITION) and thus creates a text string.

3. Your program then prepares the whole statement. When your pro-
gram calls the DELETE statement string :STMT_BUF and assigns it an
ID of D_ID for the PREPARE statement, you use the following
PREPARE statement:
EXEC SQL PREPARE D_ID FROM :STMT_BUF END-EXEC.

4. The program then executes the prepared statement, as shown in the
following example:
EXEC SQL EXECUTE D_ID END-EXEC.

Using the EXECUTE IMMEDIATE Statement
Instead of preparing a statement and then executing it, you can prepare and
execute the statement in the same step with the EXECUTE IMMEDIATE
statement.

For example, for the DELETE statement described in the preceding section,
you replace the PREPARE and EXECUTE statement sequence with the
following statement:

EXEC SQL EXECUTE IMMEDIATE :STMT_BUF END-EXEC.

The EXECUTE IMMEDIATE statement also implicitly frees the memory
resources that the prepared statement uses.
6-28 INFORMIX-ESQL/COBOL Programmer’s Manual

Executing Stored Procedures That Receive Arguments at Run Time
Executing Stored Procedures That Receive
Arguments at Run Time
In SQL, a stored procedure is a user-defined function. Anyone who has a
resource privilege on a database can create a stored procedure. Once you
create a stored procedure, you store that procedure in an executable format
in the database as an object of the database. You can use stored procedures to
perform any function you can perform in SQL, and expand what you can
accomplish with SQL alone.

You write a stored procedure with SQL and SPL statements. You can use only
SPL statements inside CREATE PROCEDURE and CREATE PROCEDURE FROM
statements. DB-Access and INFORMIX-ESQL/COBOL can use those state-
ments. You can use DB-Access to create a stored procedure. You can also
create a stored procedure at the beginning of an ESQL/COBOL program.
However, using DB-Access provides the most simple way to create a stored
procedure.

You can accomplish a wide range of objectives with stored procedures,
including improving database performance, simplifying the writing of appli-
cations, and limiting or monitoring access to data.

INFORMIX-ESQL/COBOL allows you to call, or execute, a stored procedure
and pass arguments to that procedure at run time. Because a stored
procedure exists in executable format, you can use it to execute frequently
repeated tasks to improve performance. Executing a stored procedure rather
than straight SQL code allows you to bypass repeated parsing, validity
checking, and query optimization. For further information on stored proce-
dures, refer to the Informix Guide to SQL: Tutorial.

This section provides a simple example of how to write an ESQL/COBOL
program that receives a value at run-time and passes that value as an
argument to a stored procedure. The stored procedure executes, adds a
number to the argument, and returns the sum to the ESQL/COBOL program.
Dynamic Management in INFORMIX-ESQL/COBOL 6-29

Creating a Stored Procedure
Creating a Stored Procedure
To create a stored procedure, you can use the CREATE PROCEDURE statement.
Create the CREATE PROCEDURE statement in a file of your choice using your
UNIX vi editor or any other suitable UNIX editor. Any program you write can
create a stored procedure. Make your program access this file and invoke the
CREATE PROCEDURE statement that resides within that file.

For the purposes of the code fragment from the PRO1 program listed on page
6-31, you name the following CREATE PROCEDURE statement test1. In this
example, /tmp/stevek/crpro represents the full pathname of the file that
contains the CREATE PROCEDURE statement. The stored procedure test1
accepts one integer argument from an ESQL/COBOL program, designates the
integer variable total to receive the sum of the integer argument and the
number five, and returns the value of total to the ESQL/COBOL program.

CREATE PROCEDURE test1(a_units INT)
RETURNING INT;
DEFINE total INT;
LET total = a_units + 5;
RETURN total;

END PROCEDURE;

Executing a Stored Procedure Within Your ESQL/COBOL
Application
The following ESQL/COBOL program dynamically allocates memory for a
stored procedure, passes one argument to a stored procedure, executes the
stored procedure, stores the resulting value (that the stored procedure
returns) in dynamic memory, and then displays the value. The program
performs all of those tasks at run time. For the purpose of simplicity, this
program uses an EXECUTE PROCEDURE statement that resides in the variable
PRC. You can also use interactive input to store an EXECUTE PROCEDURE
statement in a variable. The program PRO1 takes the following actions:

1. Declares the variable PRC to contain an EXECUTE PROCEDURE
statement. That statement calls the stored procedure test1 and
passes an integer value of 100 to that procedure.

2. Declares the variable INT-DATA. After the stored procedure executes,
the program passes the data (that the stored procedure returns) to a
dynamic memory storage area called DATA. INT-DATA receives the
data value from DATA. Then, a display statement uses INT-DATA.
6-30 INFORMIX-ESQL/COBOL Programmer’s Manual

Executing a Stored Procedure Within Your ESQL/COBOL Application
3. Executes the MAIN routine of the program.

4. Connects to a database server.

5. Creates a database used to contain a stored procedure.

6. Executes a CREATE PROCEDURE FROM statement that invokes the
CREATE PROCEDURE statement residing in the file
/tmp/stevek/crpro.

7. Prepares the EXECUTE PROCEDURE statement contained in the vari-
able PRC and designates prcstmt as the prepared statement name.

8. Allocates a descriptor area named spdesc.

9. Describes the descriptor area into the descriptor spdesc.

10. Declares the cursor spcurs for the prepared statement.

11. Opens the cursor and thereby invokes the EXECUTE PROCEDURE
statement in PRC.

12. Fetches the cursor using the descriptor spdesc.

13. Passes the value from the descriptor DATA into the variable
INT-DATA.

14. Displays the integer value 105 that the stored procedure returned
(100+5).

15. Closes the cursor.

16. Drops the stored procedure test1 from the database.

17. Closes the database.

18. Drops the database.

19. Disconnects from the database server.
1 *
2 *This program, PRO1, executes a stored procedure
3 *and retrieves the value returned by the stored
4 *procedure into a descriptor.
5 *An integer value, 100, is sent to
6 *the stored procedure at run time. The stored
7 *procedure adds 5 to 100. The resultant value,
8 *105, is displayed at the end of the program.
9 *

10 IDENTIFICATION DIVISION.
11 PROGRAM-ID.
12 PRO1.
13 *
14 ENVIRONMENT DIVISION.
15 CONFIGURATION SECTION.
Dynamic Management in INFORMIX-ESQL/COBOL 6-31

Executing a Stored Procedure Within Your ESQL/COBOL Application
16 SOURCE-COMPUTER. IFXSUN.
17 OBJECT-COMPUTER. IFXSUN.
18 *
19 DATA DIVISION.
20 WORKING-STORAGE SECTION.
21 *
22 *Declare variables.
23 *
24 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
25 77 SP-COUNT PIC S9(4) COMP-5.
26 77 PRC PIC X(100)
27 - VALUE "EXECUTE PROCEDURE
28 - test1(100)".
29 77 INT-DATA PIC S9(9) COMP-5.
30 EXEC SQL END DECLARE SECTION END-EXEC.
31 *
32 PROCEDURE DIVISION.
33 RESIDENT SECTION 1.
34 *
35 *Begin Main routine. Connect to the database
36 *server. Create a procedure from an external
37 *file. Prepare an EXECUTE PROCEDURE statement.
38 *Allocate a descriptor. Execute a DESCRIBE statement
39 *to define the returned value from the EXECUTE
40 *PROCEDURE statement in the descriptor area.
41 *DECLARE a cursor. OPEN the cursor. FETCH a value
42 *into the descriptor. GET the descriptor contents
43 *and move those contents into a host variable. Display
44 *the returned data value. CLOSE the cursor. DROP
45 *the procedure. CLOSE the database. DROP the database.
46 *Terminate the connection.
47 *
48 MAIN.
49 EXEC SQL CONNECT TO DEFAULT END-EXEC.
50 EXEC SQL CREATE DATABASE db1 END-EXEC.
51 EXEC SQL
52 CREATE PROCEDURE FROM '/tmp/stevek/crpro'
53 END-EXEC.
54 EXEC SQL PREPARE prcstmt FROM :PRC END-EXEC.
55 EXEC SQL ALLOCATE DESCRIPTOR 'spdesc'
56 WITH MAX 1 END-EXEC.
57 EXEC SQL DESCRIBE prcstmt USING SQL DESCRIPTOR
58 'spdesc' END-EXEC.
59 EXEC SQL DECLARE spcurs CURSOR FOR prcstmt
60 END-EXEC.
61 EXEC SQL OPEN spcurs END-EXEC.
62 EXEC SQL FETCH spcurs USING SQL DESCRIPTOR
63 'spdesc' END-EXEC.
64 EXEC SQL GET DESCRIPTOR 'spdesc' VALUE 1
6-32 INFORMIX-ESQL/COBOL Programmer’s Manual

Executing a Stored Procedure Within Your ESQL/COBOL Application
65 :INT-DATA = DATA END-EXEC.
66 DISPLAY 'DATA IS: ', INT-DATA.
67 EXEC SQL CLOSE spcurs END-EXEC.
68 EXEC SQL DROP PROCEDURE test1 END-EXEC.
69 EXEC SQL CLOSE DATABASE END-EXEC.
70 EXEC SQL DROP DATABASE db1 END-EXEC.
71 EXEC SQL DISCONNECT ALL END-EXEC.
72 STOP RUN.
73 *

The following example shows the output of the PRO1 program. The stored
procedure adds the values 100 and 5 and returns the sum (105), through
dynamic memory, to the program.

The DESCRIPTOR COUNT IS: +00001
Data is: +0000000105

Alternatively, you can use the EXECUTE INTO statement to replace the
PREPARE, OPEN, and FETCH statements in the preceding program. The
following example code fragment, from the PRO2 program, shows how to
alter the PRO1 program to use the EXECUTE INTO statement.

1 MAIN.
2 EXEC SQL CONNECT TO DEFAULT END-EXEC.
3 EXEC SQL CREATE DATABASE db1 END-EXEC.
4 EXEC SQL
5 CREATE PROCEDURE FROM 'crpro'
6 END-EXEC.
7 EXEC SQL PREPARE prcstmt FROM :PRC END-EXEC.
8 EXEC SQL ALLOCATE DESCRIPTOR 'spdesc'
9 WITH MAX 1 END-EXEC.

10 EXEC SQL DESCRIBE prcstmt USING SQL DESCRIPTOR
11 'spdesc' END-EXEC.
12 EXEC SQL
13 EXECUTE prcstmt INTO SQL DESCRIPTOR 'spdesc'
14 END-EXEC.
15 EXEC SQL GET DESCRIPTOR 'spdesc' VALUE 1
16 :INT-DATA = DATA END-EXEC.
17 DISPLAY 'DATA IS: ', INT-DATA.
18 EXEC SQL CLOSE spcurs END-EXEC.
19 EXEC SQL DROP PROCEDURE test1 END-EXEC.
20 EXEC SQL CLOSE DATABASE END-EXEC.
21 EXEC SQL DROP DATABASE db1 END-EXEC.
22 EXEC SQL DISCONNECT ALL END-EXEC.
23 STOP RUN.
Dynamic Management in INFORMIX-ESQL/COBOL 6-33

Dynamic SQL Program Examples
Dynamic SQL Program Examples
Your INFORMIX-ESQL/COBOL software includes the DEMO2.ECO and
DEMO3.ECO programs. You can create those programs when you respond
affirmatively to the esqlcobdemo7 prompt as discussed in “Demonstration
Database” in the Introduction.

The first example, DEMO2.ECO, functionally similar to the DEMO1.ECO
example shown in Chapter 1, “Programming with INFORMIX-
ESQL/COBOL,” declares the cursor for a prepared statement with an
unknown value. The program opens the cursor and supplies the value,
fetches the data, and closes the cursor.

The second example, DEMO3.ECO, was designed as a modified version of the
DEMO2.ECO example. DEMO3.ECO also uses a PREPARE statement on a query
with an unknown parameter in the WHERE clause and includes the
DESCRIBE, GET DESCRIPTOR, ALLOCATE DESCRIPTOR, and DEALLOCATE
DESCRIPTOR statements.

Both examples use the SQLSTATE value not only to detect errors but also to
signal the end of the active list of rows that the SELECT statement returned.
6-34 INFORMIX-ESQL/COBOL Programmer’s Manual

The DEMO2.ECO Program
The DEMO2.ECO Program
The DEMO2.ECO program uses a PREPARE statement on a query with an
unknown parameter in the WHERE clause.

24 *
25 *This program, DEMO2, declares a cursor for a
26 *prepared statement with an unknown value. The
27 *value is supplied when the cursor is opened,
28 *the data is fetched, and the cursor is closed.
29 *Display the data (names).
30 *
31 IDENTIFICATION DIVISION.
32 PROGRAM-ID.
33 DEMO2.
34 *
35 ENVIRONMENT DIVISION.
36 CONFIGURATION SECTION.
37 SOURCE-COMPUTER. IFXSUN.
38 OBJECT-COMPUTER. IFXSUN.
39 *
40 *Declare variables.
41 *
42 DATA DIVISION.
43 WORKING-STORAGE SECTION.
44 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
45 77 FNAME PIC X(15).
46 77 LNAME PIC X(20).
47 77 DEMO-QUERY PIC X(50)
48 VALUE "SELECT FNAME, LNAME FROM CUSTOMER WHERE LNAME>?".
49 77 QUERY-VALUE PIC X(1) VALUE "C".
50 77 MESS-TEXT PIC X(254).
51 77 SQLSTATE-VAR PIC X(5).
52 77 EX-COUNT PIC S9(9) COMP-5.
53 77 COUNTER PIC S9(9) VALUE 1 COMP-5.
54 EXEC SQL END DECLARE SECTION END-EXEC.
55 *
56 77 ZERO-FIELD PIC X(5) VALUE "00000".
57 77 NOT-FND-FIELD PIC X(5) VALUE "02000".
58 77 WHERE-ERROR PIC X(72).
59 *
60 PROCEDURE DIVISION.
61 RESIDENT SECTION 1.
62 *
63 *Begin Main routine. Open the database, prepare a query,
64 *declare a cursor, open the cursor, fetch the cursor,
65 *and close the cursor.
Dynamic Management in INFORMIX-ESQL/COBOL 6-35

The DEMO2.ECO Program
66 *
67 MAIN.
68 DISPLAY ' '.
69 DISPLAY ' '.
70 DISPLAY 'DEMO2 SAMPLE ESQL PROGRAM RUNNING.'.
71 DISPLAY ' TEST OPEN USING AND FETCH INTO'.
72 DISPLAY' '.
73 DISPLAY ' '.
74 DISPLAY 'PERFORM OPEN-DATABASE'.
75 DISPLAY ' '.
76 PERFORM OPEN-DATABASE.
77 DISPLAY ' '.
78 DISPLAY 'PERFORM PREPARE-QUERY'.
79 DISPLAY ' '.
80 PERFORM PREPARE-QUERY.
81 DISPLAY ' '.
82 DISPLAY 'PERFORM DECLARE-CURSOR'.
83 DISPLAY ' '.
84 PERFORM DECLARE-CURSOR.
85 DISPLAY ' '.
86 DISPLAY 'PERFORM OPEN-CURSOR'.
87 DISPLAY ' '.
88 PERFORM OPEN-CURSOR.
89 MOVE "00000" TO SQLSTATE-VAR.
90 DISPLAY ' '.
91 DISPLAY 'PERFORM FETCH-CURSOR'.
92 DISPLAY ' '.
93 PERFORM FETCH-CURSOR
94 UNTIL SQLSTATE-VAR NOT EQUAL TO ZERO-FIELD.
95 DISPLAY ' '.
96 DISPLAY 'PERFORM CLOSE-CURSOR'.
97 DISPLAY ' '.
98 PERFORM CLOSE-CURSOR.
99 EXEC SQL DISCONNECT CURRENT END-EXEC.

100 DISPLAY 'PROGRAM OVER'.
101 STOP RUN.
102 *
103 *Subroutine to open the database.
104 *
105 OPEN-DATABASE.
106 DISPLAY ' '.
107 DISPLAY 'EXECUTING CONNECT STATEMENT'.
108 DISPLAY ' '.
109 EXEC SQL CONNECT TO 'STORES7' END-EXEC.
110 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
111 MOVE 'EXCEPTION ON DATABASE STORES7:'
112 TO WHERE-ERROR
113 PERFORM ERROR-PROCESS.
114 *
6-36 INFORMIX-ESQL/COBOL Programmer’s Manual

The DEMO2.ECO Program
115 *Subroutine to prepare a query.
116 *
117 PREPARE-QUERY.

118 DISPLAY ' '.
119 DISPLAY 'EXECUTING PREPARE-QUERY STATEMENT'.
120 DISPLAY ' '.
121 EXEC SQL PREPARE QID FROM :DEMO-QUERY END-EXEC.
122 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
123 MOVE 'ERROR ON PREPARE QUERY:'
124 TO WHERE-ERROR
125 PERFORM ERROR-PROCESS.
126 *
127 *Subroutine to declare a cursor.
128 *
129 DECLARE-CURSOR.
130 DISPLAY ' '.
131 DISPLAY 'EXECUTING DECLARE-CURSOR STATEMENT'.
132 DISPLAY ' '.
133 EXEC SQL DECLARE DEMOCURSOR CURSOR FOR QID END-EXEC.
134 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
135 MOVE 'ERROR ON DECLARE CURSOR:'
136 TO WHERE-ERROR
137 PERFORM ERROR-PROCESS.
138 *
139 *Subroutine to open a cursor.
140 *
141 OPEN-CURSOR.
142 DISPLAY ' '.
143 DISPLAY 'EXECUTING OPEN-CURSOR STATEMENT'.
144 DISPLAY ' '.
145 EXEC SQL OPEN DEMOCURSOR USING :QUERY-VALUE END-EXEC.
146 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
147 MOVE 'ERROR ON OPEN CURSOR:'
148 TO WHERE-ERROR
149 PERFORM ERROR-PROCESS.
150 *
151 *Subroutine to fetch a cursor. Display data (names).
152 *
153 FETCH-CURSOR.
154 DISPLAY ' '.
155 IF COUNTER IS EQUAL TO 1
156 DISPLAY 'EXECUTING FETCH-CURSOR STATEMENT'.
157 ADD 1 TO COUNTER.
158 DISPLAY ' '.
159 EXEC SQL FETCH DEMOCURSOR INTO :FNAME, :LNAME END-EXEC.
160 MOVE SQLSTATE TO SQLSTATE-VAR.
161 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
162 AND
Dynamic Management in INFORMIX-ESQL/COBOL 6-37

The DEMO2.ECO Program
163 SQLSTATE NOT EQUAL TO NOT-FND-FIELD
164 MOVE 'ERROR DURING FETCH:'
165 TO WHERE-ERROR
166 PERFORM ERROR-PROCESS.
167 IF SQLSTATE IS EQUAL TO ZERO-FIELD
168 DISPLAY FNAME, ' ', LNAME.
169 *
170 *Subroutine to close a cursor.
171 *
172 CLOSE-CURSOR.
173 DISPLAY ' '.
174 DISPLAY 'EXECUTING CLOSE-CURSOR STATEMENT'.
175 DISPLAY ' '.
176 EXEC SQL CLOSE DEMOCURSOR END-EXEC.
177 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
178 MOVE 'ERROR ON OPEN CURSOR:'
179 TO WHERE-ERROR
180 PERFORM ERROR-PROCESS.
181 *
182 *Subroutine to check for exceptions.
183 *
184 ERROR-PROCESS.
185 DISPLAY WHERE-ERROR.
186 DISPLAY 'THE SQLSTATE CODE IS: ', SQLSTATE.
187 DISPLAY '*********************************'.
188 EXEC SQL GET DIAGNOSTICS :EX-COUNT=NUMBER END-EXEC.
189 PERFORM EX-LOOP UNTIL COUNTER IS GREATER THAN EX-COUNT.
190 IF SQLCODE NOT EQUAL TO ZERO
191 STOP RUN.
192 *
193 *Subroutine to print exception messages.
194 *
195 EX-LOOP.
196 EXEC SQL
197 GET DIAGNOSTICS EXCEPTION :COUNTER
198 :MESS-TEXT=MESSAGE_TEXT
199 END-EXEC.
200 DISPLAY 'EXCEPTION ', COUNTER.
201 DISPLAY 'MESSAGE TEXT IS: ', MESS-TEXT.
202 DISPLAY '*****************************'.
203 ADD 1 TO COUNTER.
204 *
6-38 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO2.ECO
Explanation of DEMO2.ECO
The following subsections provide a paragraph-by-paragraph explanation of
the DEMO2.ECO source program using representative COBOL sequence
numbering to help you locate the line or concept under discussion.

In this example program, all paragraph headers begin in Area A. All SQL
statements reside within Area B.

The Informix Guide to SQL: Syntax and Chapter 4, “Error Handling,” in this
manual and describe the SQLSTATE value and the GET DIAGNOSTICS
statement used in the DEMO2.ECO example program. The Informix Guide to
SQL: Syntax provides a detailed description of the individual SQL statements
used in DEMO2.ECO.

Lines 1 through 16

These lines of code define the standard COBOL IDENTIFICATION DIVISION
that identify the program, and the ENVIRONMENT DIVISION, that identify
the computer and specify any input/output devices that the program uses.
This code segment uses the standard COBOL comment indicator, the asterisk
(*) in position 7.

1 *
2 *This program, DEMO2, declares a cursor for a
3 *prepared statement with an unknown value. The
4 *value is supplied when the cursor is opened,
5 *the data is fetched, and the cursor is closed.
6 *Display the data (names).
7 *
8 IDENTIFICATION DIVISION.
9 PROGRAM-ID.

10 DEMO2.
11 *
12 ENVIRONMENT DIVISION.
13 CONFIGURATION SECTION.
14 SOURCE-COMPUTER. IFXSUN.
15 OBJECT-COMPUTER. IFXSUN.
16 *

Lines 17 through 36

The DATA DIVISION describes the files, records, and fields that the COBOL
program uses.
Dynamic Management in INFORMIX-ESQL/COBOL 6-39

Explanation of DEMO2.ECO
You declare host variables, also known as independent data items, in the
WORKING-STORAGE SECTION as level number 77. Here, the program defines
the host variables FNAME, LNAME, DEMO-QUERY, and QUERY-VALUE as
alphanumeric in the PICTURE clauses within the EXEC SQL BEGIN DECLARE
SECTION END-EXEC and the EXEC SQL END DECLARE SECTION END-EXEC.

The host variables FNAME and LNAME represent columns in the customer
table. The VALUE clause of the DEMO-QUERY data item represents an SQL
statement that selects the first name and last name from the customer table,
where the last name exceeds a specific value. The program uses a question
mark wildcard in the WHERE clause of the SELECT statement and evaluates
to a single character. The VALUE clause of the QUERY-VALUE data item
establishes the initial value for the field as the letter "C".

The program defines the MESS-TEXT host variable to receive the contents of
the MESSAGE-TEXT field in the GET DIAGNOSTICS statement. The program
uses the EX-COUNT and COUNTER variables as conditions for exception-
checking subroutines.

The program declares the non-host COBOL variables ZERO-FIELD and
NOT-FND-FIELD to hold SQLSTATE values for Success ("00000") and No Data
Found ("02000"), respectively. The program declares the non-host COBOL
variable WHERE-ERROR as alphanumeric to hold an error message string.

17 *Declare variables.
18 *
19 DATA DIVISION.
20 WORKING-STORAGE SECTION.
21 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
22 77 FNAME PIC X(15).
23 77 LNAME PIC X(20).
24 77 DEMO-QUERY PIC X(50)
25 VALUE "SELECT FNAME, LNAME FROM CUSTOMER WHERE LNAME>?".
26 77 QUERY-VALUE PIC X(1) VALUE "C".
27 77 MESS-TEXT PIC X(254).
28 77 SQLSTATE-VAR PIC X(5).
29 77 EX-COUNT PIC S9(9) COMP-5.
30 77 COUNTER PIC S9(9) VALUE 1 COMP-5.
31 EXEC SQL END DECLARE SECTION END-EXEC.
32 *
33 77 ZERO-FIELD PIC X(5) VALUE "00000".
34 77 NOT-FND-FIELD PIC X(5) VALUE "02000".
35 77 WHERE-ERROR PIC X(72).
36 *
6-40 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO2.ECO
Lines 37 through 80

The MAIN paragraph begins in the PROCEDURE DIVISION. MAIN controls the
sequence that performs each paragraph or subroutine and the iterations each
paragraph or subroutine performs. The MAIN paragraph consists of instruc-
tions for the database server to perform the following steps. When each step
executes successfully, the program performs those instructions in the
following order:

1. Display messages on the screen to let you know that the
ESQL/COBOL program DEMO2 runs successfully and the program
currently tests the SQL statements and the OPEN DEMOCURSOR
USING and FETCH DEMOCURSOR INTO clauses.

2. Open the database (in this case, stores7).

3. Prepare the query that was established in the WORKING-STORAGE
section as DEMO-QUERY.

4. Declare the cursor DEMOCURSOR.

5. Open the cursor DEMOCURSOR.

6. Set the SQLSTATE-VAR variable to "00000".

7. Fetch the cursor DEMOCURSOR until the SQLSTATE-VAR variable
does not equal to "00000".

8. Close the cursor DEMOCURSOR when the program meets that
condition.

9. DISCONNECT from the current database.

10. Display "PROGRAM OVER" on the screen.

11. Execute the standard COBOL statement STOP RUN and exit the
program, returning you to the operating system prompt.
Dynamic Management in INFORMIX-ESQL/COBOL 6-41

Explanation of DEMO2.ECO
37 *
38 PROCEDURE DIVISION.
39 RESIDENT SECTION 1.
40 *
41 *Begin Main routine. Open the database, prepare a query,
42 *declare a cursor, open the cursor, fetch the cursor,
43 *and close the cursor.
44 *
45 MAIN.
46 DISPLAY ' '.
47 DISPLAY ' '.
48 DISPLAY 'DEMO2 SAMPLE ESQL PROGRAM RUNNING.'.
49 DISPLAY ' TEST OPEN USING AND FETCH INTO'.
50 DISPLAY' '.
51 DISPLAY ' '.
52 DISPLAY 'PERFORM OPEN-DATABASE'.
53 DISPLAY ' '.
54 PERFORM OPEN-DATABASE.
55 DISPLAY ' '.
56 DISPLAY 'PERFORM PREPARE-QUERY'.
57 DISPLAY ' '.
58 PERFORM PREPARE-QUERY.
59 DISPLAY ' '.
60 DISPLAY 'PERFORM DECLARE-CURSOR'.
61 DISPLAY ' '.
62 PERFORM DECLARE-CURSOR.
63 DISPLAY ' '.
64 DISPLAY 'PERFORM OPEN-CURSOR'.
65 DISPLAY ' '.
66 PERFORM OPEN-CURSOR.
67 MOVE "00000" TO SQLSTATE-VAR.
68 DISPLAY ' '.
69 DISPLAY 'PERFORM FETCH-CURSOR'.
70 DISPLAY ' '.
71 PERFORM FETCH-CURSOR
72 UNTIL SQLSTATE-VAR NOT EQUAL TO ZERO-FIELD.
73 DISPLAY ' '.
74 DISPLAY 'PERFORM CLOSE-CURSOR'.
75 DISPLAY ' '.
76 PERFORM CLOSE-CURSOR.
77 EXEC SQL DISCONNECT CURRENT END-EXEC.
78 DISPLAY 'PROGRAM OVER'.
79 STOP RUN.
80 *

The following subsections individually describe the various PERFORM
statements in the PROCEDURE division.
6-42 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO2.ECO
Lines 81 through 92

The OPEN-DATABASE subroutine opens the stores7 database using the
embedded SQL statement DATABASE. The SQL statement resides in the
COBOL program between the words EXEC SQL and END-EXEC.

A conditional IF statement returns the message ERROR ON DATABASE
STORES7 to the WHERE-ERROR variable when SQLSTATE does not equal
"00000". Such an error can occur when you do not create the stores7 database
before you open it.

If an error occurs during the execution of the OPEN-DATABASE subroutine,
the database server performs the ERROR-PROCESS subroutine.

81 *Subroutine to open the database.
82 *
83 OPEN-DATABASE.
84 DISPLAY ' '.
85 DISPLAY 'EXECUTING CONNECT STATEMENT'.
86 DISPLAY ' '.
87 EXEC SQL CONNECT TO 'STORES7' END-EXEC.
88 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
89 MOVE 'EXCEPTION ON DATABASE STORES7:'
90 TO WHERE-ERROR
91 PERFORM ERROR-PROCESS.
92 *

Lines 93 through 104

The PREPARE-QUERY subroutine uses the embedded dynamic SQL statement
PREPARE to prepare the QID query id variable from the DEMO-QUERY
variable declared in the DATA DIVISION. When the program prepares the
select cursor, the program passes the SELECT statement it represents to the
database server.
Dynamic Management in INFORMIX-ESQL/COBOL 6-43

Explanation of DEMO2.ECO
An IF statement returns the message ERROR ON PREPARE QUERY to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the PREPARE-QUERY subroutine, the
database server performs the ERROR-PROCESS subroutine.

93 *Subroutine to prepare a query.
94 *
95 PREPARE-QUERY.

96 DISPLAY ' '.
97 DISPLAY 'EXECUTING PREPARE-QUERY STATEMENT'.
98 DISPLAY ' '.
99 EXEC SQL PREPARE QID FROM :DEMO-QUERY END-EXEC.

100 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
101 MOVE 'ERROR ON PREPARE QUERY:'
102 TO WHERE-ERROR
103 PERFORM ERROR-PROCESS.
104 *

Lines 105 through 116

The DECLARE-CURSOR subroutine uses the embedded dynamic
SQLstatement DECLARE to define DEMOCURSOR as a select cursor for the
active set of rows that the prepared QID statement id variable specifies.
DEMOCURSOR manages data that the program reads from the customer
table.

The SELECT statement, that the embedded variable QID represents,
determines the type of data that the program reads from the table. The QID
variable represents a query on the first and last names of customers selected
from the customer table, where the LNAME begins with a letter that has a
higher ASCII value than the letter "C".
6-44 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO2.ECO
An IF statement returns the message ERROR ON DECLARE CURSOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the DECLARE-CURSOR subroutine, the
database server performs the ERROR-PROCESS subroutine.

105 *Subroutine to declare a cursor.
106 *
107 DECLARE-CURSOR.
108 DISPLAY ' '.
109 DISPLAY 'EXECUTING DECLARE-CURSOR STATEMENT'.
110 DISPLAY ' '.
111 EXEC SQL DECLARE DEMOCURSOR CURSOR FOR QID END-EXEC.
112 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
113 MOVE 'ERROR ON DECLARE CURSOR:'
114 TO WHERE-ERROR
115 PERFORM ERROR-PROCESS.
116 *

Lines 117 through 128

The OPEN-CURSOR subroutine activates the select cursor DEMOCURSOR
using the embedded dynamic SQL statement OPEN. The clause USING
:QUERY-VALUE begins execution of the SELECT statement that the program
variable represents.

When the select cursor was prepared, the SELECT statement it represents was
passed to the database server. Here, the program passes the values specified
in the USING clause to the database server. Rather than construct the first row
of the active set for the query, the database server sets the SQLSTATE value.
When the program uses a valid SELECT, the value of SQLSTATE equals
"00000".
Dynamic Management in INFORMIX-ESQL/COBOL 6-45

Explanation of DEMO2.ECO
An IF statement returns the message ERROR ON OPEN CURSOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the OPEN-CURSOR subroutine, the
database server performs the ERROR-PROCESS subroutine.

117 *Subroutine to open a cursor.
118 *
119 OPEN-CURSOR.
120 DISPLAY ' '.
121 DISPLAY 'EXECUTING OPEN-CURSOR STATEMENT'.
122 DISPLAY ' '.
123 EXEC SQL OPEN DEMOCURSOR USING :QUERY-VALUE END-EXEC.
124 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
125 MOVE 'ERROR ON OPEN CURSOR:'
126 TO WHERE-ERROR
127 PERFORM ERROR-PROCESS.
128 *

Lines 129 through 147

The FETCH-CURSOR subroutine uses the embedded dynamic SQL statement
FETCH to move the previously declared cursor DEMOCURSOR to a new row
in the active set and to retrieve the row values into memory for the COBOL
program to use. DEMOCURSOR selects a row from the customer table and
puts the data from that row into the host variables FNAME and LNAME.

The PERFORM-UNTIL statement in the MAIN routine uses the SQLSTATE-VAR
variable to check the result of the FETCH statement. As long as SQLSTATE
equals "00000", the data was fetched successfully, and the subroutine
continues. When the program has fetched all the data that meets the criteria,
the database server sets SQLSTATE to "02000" to indicate that no more data
exists. It also displays the first and last names of the customers on the screen.
6-46 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO2.ECO
An IF statement returns the message ERROR DURING FETCH to the WHERE-
ERROR variable when SQLSTATE does not equal "00000" and when SQLSTATE
does not equal "02000". When an error occurs during the execution of the
FETCH-CURSOR subroutine, the database server performs the ERROR-
PROCESS subroutine.

129 *Subroutine to fetch a cursor. Display data (names).
130 *
131 FETCH-CURSOR.
132 DISPLAY ' '.
133 IF COUNTER IS EQUAL TO 1
134 DISPLAY 'EXECUTING FETCH-CURSOR STATEMENT'.
135 ADD 1 TO COUNTER.
136 DISPLAY ' '.
137 EXEC SQL FETCH DEMOCURSOR INTO :FNAME, :LNAME END-EXEC.
138 MOVE SQLSTATE TO SQLSTATE-VAR.
139 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
140 AND
141 SQLSTATE NOT EQUAL TO NOT-FND-FIELD
142 MOVE 'ERROR DURING FETCH:'
143 TO WHERE-ERROR
144 PERFORM ERROR-PROCESS.
145 IF SQLSTATE IS EQUAL TO ZERO-FIELD
146 DISPLAY FNAME, ' ', LNAME.
147 *

Lines 148 through 159

The CLOSE-CURSOR subroutine closes the cursor DEMOCURSOR using the
embedded dynamic SQL statement CLOSE. It disassociates the cursor from
the SELECT statement and stops the query process.

An IF statement returns the message ERROR ON OPEN CURSOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the CLOSE-CURSOR subroutine, the
database server performs the ERROR-PROCESS subroutine.

148 *Subroutine to close a cursor.
149 *
150 CLOSE-CURSOR.
151 DISPLAY ' '.
152 DISPLAY 'EXECUTING CLOSE-CURSOR STATEMENT'.
153 DISPLAY ' '.
154 EXEC SQL CLOSE DEMOCURSOR END-EXEC.
155 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
156 MOVE 'ERROR ON OPEN CURSOR:'
Dynamic Management in INFORMIX-ESQL/COBOL 6-47

Explanation of DEMO2.ECO
157 TO WHERE-ERROR
158 PERFORM ERROR-PROCESS.
159 *

Lines 160 through 170

The ERROR-PROCESS subroutine contains the process that counts SQLSTATE
exceptions. That subroutine executes whenever an error occurs in one of the
other subroutines. The DEMO2.ECO program stops running whenever the
ERROR-PROCESS subroutine receives an SQLCODE value not equal to ZERO.

SQLSTATE indicates the result of executing an SQL statement ("00000",
"02000", or a value greater than "02000"). The GET DIAGNOSTICS NUMBER
field contains the count of exceptions associated with the SQLSTATE code. The
PERFORM UNTIL statement executes the EX-LOOP subroutine that displays an
error message for each exception.

160 *Subroutine to check for exceptions.
161 *
162 ERROR-PROCESS.
163 DISPLAY WHERE-ERROR.
164 DISPLAY 'THE SQLSTATE CODE IS: ', SQLSTATE.
165 DISPLAY '*********************************'.
166 EXEC SQL GET DIAGNOSTICS :EX-COUNT=NUMBER END-EXEC.
167 PERFORM EX-LOOP UNTIL COUNTER IS GREATER THAN EX-COUNT.
168 IF SQLCODE NOT EQUAL TO ZERO
169 STOP RUN.
170 *

Lines 171 through 180

The EX-LOOP subroutine displays the exception number and the error
message for each SQLSTATE exception.

171 EX-LOOP.
172 EXEC SQL
173 GET DIAGNOSTICS EXCEPTION :COUNTER
174 :MESS-TEXT=MESSAGE_TEXT
175 END-EXEC.
176 DISPLAY 'EXCEPTION ', COUNTER.
177 DISPLAY 'MESSAGE TEXT IS: ', MESS-TEXT.
178 DISPLAY '*****************************'.
179 ADD 1 TO COUNTER.
180 *
6-48 INFORMIX-ESQL/COBOL Programmer’s Manual

The DEMO3.ECO Program
The DEMO3.ECO Program
DEMO3.ECO uses system descriptors with a SELECT statement that receives
WHERE-clause values at run time.

1 *
2 *This program, DEMO3, uses system
3 *descriptors with a SELECT statement that receives
4 *WHERE-clause values at run time. DEMO3 uses a
5 *PREPARE statement on a query with an unknown
6 *parameter in the WHERE clause and includes the
7 *DESCRIBE, GET DESCRIPTOR, ALLOCATE DESCRIPTOR,
8 *and DEALLOCATE DESCRIPTOR statements. DEMO3
9 *also prints the contents of the system descriptor

10 *area.
11 *
12 IDENTIFICATION DIVISION.
13 PROGRAM-ID.
14 DEMO3.
15 *
16 ENVIRONMENT DIVISION.
17 CONFIGURATION SECTION.
18 SOURCE-COMPUTER. IFXSUN.
19 OBJECT-COMPUTER. IFXSUN.
20 *
21 *Declare variables.
22 *
23 DATA DIVISION.
24 WORKING-STORAGE SECTION.
25 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
26 77 RET-BUFFER PIC X(20).
27 77 DEMO-QUERY PIC X(50)
28 VALUE "SELECT FNAME, LNAME FROM CUSTOMER WHERE LNAME>?".
29 77 QUERY-VALUE PIC X(1) VALUE "C".
30 77 DESC-COUNT SQLINT.
31 77 DESC-INDEX SQLINT.
32 77 MESS-TEXT PIC X(254).
33 77 SQLSTATE-VAR PIC X(5).
34 77 EX-COUNT PIC S9(9) COMP-5.
35 77 COUNTER PIC S9(9) VALUE 1 COMP-5.
36 EXEC SQL END DECLARE SECTION END-EXEC.
37 *
38 77 ZERO-FIELD PIC X(5) VALUE "00000".
39 77 NOT-FND-FIELD PIC X(5) VALUE "02000".
40 77 WHERE-ERROR PIC X(72).
41 77 COUNTER-F PIC S9(9) VALUE 1 COMP-5.
42 77 COUNT-DESC PIC S9(9) VALUE 1 COMP-5.
Dynamic Management in INFORMIX-ESQL/COBOL 6-49

The DEMO3.ECO Program
43 *
44 PROCEDURE DIVISION.
45 RESIDENT SECTION 1.
46 *
47 *Begin Main routine. Open a database, prepare a query,
48 *declare a cursor, allocate descriptors, execute a
49 *describe statement, open the cursor, fetch the cursor,
50 *and close the cursor.
51 *
52 MAIN.
53 DISPLAY ' '.
54 DISPLAY ' '.
55 DISPLAY 'DEMO3 SAMPLE ESQL PROGRAM RUNNING.'.
56 DISPLAY ' TEST SIMPLE DECLARE/OPEN/FETCH/LOOP'.
57 DISPLAY' '.
58 DISPLAY ' '.
59 DISPLAY 'PERFORM OPEN-DATABASE'.
60 DISPLAY ' '.
61 PERFORM OPEN-DATABASE.
62 DISPLAY ' '.
63 DISPLAY 'PERFORM PREPARE-QUERY'.
64 DISPLAY ' '.
65 PERFORM PREPARE-QUERY.
66 DISPLAY ' '.
67 DISPLAY 'PERFORM DECLARE-CURSOR'.
68 DISPLAY ' '.
69 PERFORM DECLARE-CURSOR.
70 DISPLAY ' '.
71 DISPLAY 'PERFORM ALLOCATE-DESCRIPTOR'.
72 DISPLAY ' '.
73 PERFORM ALLOCATE-DESCRIPTOR.
74 DISPLAY ' '.
75 DISPLAY 'PERFORM DESCRIBE-ID'.
76 DISPLAY ' '.
77 PERFORM DESCRIBE-ID.
78 DISPLAY ' '.
79 DISPLAY 'PERFORM OPEN-CURSOR'.
80 DISPLAY ' '.
81 PERFORM OPEN-CURSOR.
82 MOVE "00000" TO SQLSTATE-VAR.
83 DISPLAY ' '.
84 DISPLAY 'PERFORM FETCH-CURSOR'.
85 DISPLAY ' '.
86 PERFORM FETCH-CURSOR
87 UNTIL SQLSTATE-VAR NOT EQUAL TO ZERO-FIELD.
88 DISPLAY ' '.
89 DISPLAY 'PERFORM CLOSE-CURSOR'.
90 DISPLAY ' '.
91 PERFORM CLOSE-CURSOR.
6-50 INFORMIX-ESQL/COBOL Programmer’s Manual

The DEMO3.ECO Program
92 EXEC SQL DISCONNECT CURRENT END-EXEC.
93 DISPLAY 'PROGRAM OVER'.
94 STOP RUN.
95 *
96 *Subroutine to open a database.
97 *
98 OPEN-DATABASE.
99 DISPLAY ' '.

100 DISPLAY 'EXECUTING CONNECT STATEMENT'.
101 DISPLAY ' '.
102 EXEC SQL CONNECT TO 'STORES7' END-EXEC.
103 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
104 MOVE 'EXCEPTION ON DATABASE STORES7:'
105 TO WHERE-ERROR
106 PERFORM ERROR-PROCESS.
107 *
108 *Subroutine to prepare a query.
109 *
110 PREPARE-QUERY.
111 DISPLAY ' '.
112 DISPLAY 'EXECUTING PREPARE STATEMENT'.
113 DISPLAY ' '.
114 EXEC SQL PREPARE QID FROM :DEMO-QUERY END-EXEC.
115 IF SQLSTATE IS NOT EQUAL TO ZERO-FIELD
116 MOVE 'ERROR ON PREPARE QUERY:'
117 TO WHERE-ERROR
118 PERFORM ERROR-PROCESS.
119 *
120 *Subroutine to declare a cursor.
121 *
122 DECLARE-CURSOR.
123 DISPLAY ' '.
124 DISPLAY 'EXECUTING DECLARE-CURSOR STATEMENT'.
125 DISPLAY ' '.
126 EXEC SQL DECLARE DEMOCURSOR CURSOR FOR QID END-EXEC.
127 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
128 MOVE 'ERROR ON DECLARE CURSOR:'
129 TO WHERE-ERROR
130 PERFORM ERROR-PROCESS.
131 *
132 *Subroutine to allocate a descriptor.
133 *
134 ALLOCATE-DESCRIPTOR.
135 DISPLAY ' '.
136 DISPLAY 'EXECUTING ALLOCATE DESCRIPTOR STATEMENT'.
137 DISPLAY ' '.
138 EXEC SQL ALLOCATE DESCRIPTOR 'desc' END-EXEC.
139 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
140 MOVE 'ERROR ON ALLOCATE DESCRIPTOR:'
Dynamic Management in INFORMIX-ESQL/COBOL 6-51

The DEMO3.ECO Program
141 TO WHERE-ERROR
142 PERFORM ERROR-PROCESS.
143 *
144 *Subroutine to deallocate a descriptor.
145 *
146 DEALLOCATE-DESCRIPTOR.
147 DISPLAY ' '.
148 DISPLAY 'EXECUTING DEALLOCATE DESCRIPTOR STATEMENT'.
149 DISPLAY ' '.
150 EXEC SQL DEALLOCATE DESCRIPTOR 'desc' END-EXEC.
151 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
152 MOVE 'ERROR ON DEALLOCATE DESCRIPTOR:'
153 TO WHERE-ERROR
154 PERFORM ERROR-PROCESS.
155 *
156 *Subroutine to execute a describe statement.
157 *
158 DESCRIBE-ID.
159 DISPLAY ' '.
160 DISPLAY 'EXECUTING DESCRIBE STATEMENT'.
161 DISPLAY ' '.
162 EXEC SQL DESCRIBE QID
163 USING SQL DESCRIPTOR 'desc' END-EXEC.
164 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
165 MOVE 'ERROR ON DESCRIBE ID:'
166 TO WHERE-ERROR
167 PERFORM ERROR-PROCESS.
168 EXEC SQL GET DESCRIPTOR 'desc'
169 :DESC-COUNT=COUNT END-EXEC.
170 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
171 MOVE 'ERROR ON GET DESCRIPTOR:'
172 TO WHERE-ERROR
173 PERFORM ERROR-PROCESS.
174 *
175 *Subroutine to open a cursor.
176 *
177 OPEN-CURSOR.
178 DISPLAY ' '.
179 DISPLAY 'EXECUTING OPEN-CURSOR STATEMENT'.
180 DISPLAY ' '.
181 EXEC SQL OPEN DEMOCURSOR USING :QUERY-VALUE END-EXEC.
182 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
183 MOVE 'ERROR ON OPEN CURSOR:'
184 TO WHERE-ERROR
185 PERFORM ERROR-PROCESS.
186 *
187 *Subroutine to fetch a cursor.
188 *
189 FETCH-CURSOR.
6-52 INFORMIX-ESQL/COBOL Programmer’s Manual

The DEMO3.ECO Program
190 DISPLAY ' '.
191 IF COUNTER-F IS EQUAL TO 1
192 DISPLAY 'EXECUTING FETCH-CURSOR STATEMENT'.
193 ADD 1 TO COUNTER-F.
194 DISPLAY ' '.
195 EXEC SQL FETCH DEMOCURSOR
196 USING SQL DESCRIPTOR 'desc' END-EXEC.
197 MOVE SQLSTATE TO SQLSTATE-VAR.
198 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
199 AND
200 SQLSTATE NOT EQUAL TO NOT-FND-FIELD
201 MOVE 'ERROR DURING FETCH:'
202 TO WHERE-ERROR
203 PERFORM ERROR-PROCESS.
204 IF SQLSTATE NOT EQUAL TO NOT-FND-FIELD
205 PERFORM PRINT-DESCRIPTOR
206 VARYING DESC-INDEX FROM 1 BY 1
207 UNTIL DESC-INDEX>DESC-COUNT
208 DISPLAY ' '.
209 *
210 *Subroutine to print a descriptor. Display data (names).
211 *
212 PRINT-DESCRIPTOR.
213 DISPLAY ' '.
214 IF COUNT-DESC IS EQUAL TO 1
215 DISPLAY 'EXECUTING GET DESCRIPTOR STATEMENTS'.
216 ADD 1 TO COUNT-DESC.
217 DISPLAY ' '.
218 EXEC SQL GET DESCRIPTOR 'desc' VALUE :DESC-INDEX
219 :RET-BUFFER=DATA END-EXEC.
220 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
221 MOVE 'ERROR ON GET DESCRIPTOR:'
222 TO WHERE-ERROR
223 PERFORM ERROR-PROCESS.
224 DISPLAY RET-BUFFER, ' ' WITH NO ADVANCING.
225 *
226 *Subroutine to close a cursor.
227 *
228 CLOSE-CURSOR.
229 DISPLAY ' '.
230 DISPLAY 'EXECUTING CLOSE-CURSOR STATEMENT'.
231 DISPLAY ' '.
232 EXEC SQL CLOSE DEMOCURSOR END-EXEC.
233 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
234 MOVE 'ERROR ON OPEN CURSOR:'
235 TO WHERE-ERROR
236 PERFORM ERROR-PROCESS.
237 *
238 *Subroutine to check for exceptions.
Dynamic Management in INFORMIX-ESQL/COBOL 6-53

Explanation of DEMO3.ECO
239 *
240 ERROR-PROCESS.
241 DISPLAY WHERE-ERROR.
242 DISPLAY 'THE SQLSTATE CODE IS: ', SQLSTATE.
243 DISPLAY '*********************************'.
244 EXEC SQL GET DIAGNOSTICS :EX-COUNT=NUMBER END-EXEC.
245 PERFORM EX-LOOP UNTIL COUNTER IS GREATER THAN EX-COUNT.
246 IF SQLCODE NOT EQUAL TO ZERO
247 STOP RUN.
248 *
249 *Subroutine to print exception messages.
250 *
251 EX-LOOP.
252 EXEC SQL
253 GET DIAGNOSTICS EXCEPTION :COUNTER
254 :MESS-TEXT=MESSAGE_TEXT
255 END-EXEC.
256 DISPLAY 'EXCEPTION ', COUNTER.
257 DISPLAY 'MESSAGE TEXT IS: ', MESS-TEXT.
258 DISPLAY '*****************************'.
259 ADD 1 TO COUNTER.
260 *

Explanation of DEMO3.ECO
The following subsections provide a paragraph-by-paragraph explanation of
the DEMO3.ECO source program using representative COBOL sequence
numbering to help you locate the line or concept under discussion.

In this example program, all paragraph headers begin in Area A. All SQL
statements reside within Area B.

Chapter 4, “Error Handling,” of this manual and the Informix Guide to SQL:
Syntax describe the SQLSTATE value and the GET DIAGNOSTICS statement
that the DEMO3.ECO program uses. The Informix Guide to SQL: Syntax
provides a detailed description of the individual SQL statements used in
DEMO2.ECO.
6-54 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO3.ECO
Lines 1 through 20

These lines of code define the standard COBOL IDENTIFICATION DIVISION
and ENVIRONMENT DIVISION used to identify the program, the computer,
and any input/output devices.

1 *
2 *This program, DEMO3, uses system
3 *descriptors with a SELECT statement that receives
4 *WHERE-clause values at run time. DEMO3 uses a
5 *PREPARE statement on a query with an unknown
6 *parameter in the WHERE clause and includes the
7 *DESCRIBE, GET DESCRIPTOR, ALLOCATE DESCRIPTOR,
8 *and DEALLOCATE DESCRIPTOR statements. DEMO3
9 *also prints the contents of the system descriptor

10 *area.
11 *
12 IDENTIFICATION DIVISION.
13 PROGRAM-ID.
14 DEMO3.
15 *
16 ENVIRONMENT DIVISION.
17 CONFIGURATION SECTION.
18 SOURCE-COMPUTER. IFXSUN.
19 OBJECT-COMPUTER. IFXSUN.
20 *

Lines 21 through 43

The DATA DIVISION describes the files, records, and fields that the COBOL
program uses.

You declare host variables, also known as independent data items, in the
WORKING-STORAGE SECTION as level number 77. Here, the program defines
host variables RET-BUFFER, DEMO-QUERY, QUERY-VALUE, DESC-COUNT, and
DESC-INDEX in the PICTURE clauses within the EXEC SQL BEGIN DECLARE
SECTION END-EXEC and the EXEC SQL END DECLARE SECTION END-EXEC.
Dynamic Management in INFORMIX-ESQL/COBOL 6-55

Explanation of DEMO3.ECO
■ The program declares RET-BUFFER, DEMO-QUERY, and
QUERY-VALUE as alphanumeric. The program designates
RET-BUFFER as the buffer that holds the results of the query
DEMO-QUERY.

❑ The VALUE clause of the DEMO-QUERY data item represents an
SQL statement that selects the first name and last name from the
customer table where the last name exceeds a specific value. The
program uses a question mark (?) wildcard in the WHERE clause
of the SELECT statement and evaluates to a single character.

❑ The VALUE clause of the QUERY-VALUE data item establishes the
initial value for the field as the letter "C".

■ The program declares DESC-COUNT and DESC-INDEX as the
predefined data type SQLINT. DESC-COUNT holds a descriptor value
and DESC-INDEX serves as a counter.

The program defines the MESS-TEXT host variable to receive the contents of
the MESSAGE-TEXT field in the GET DIAGNOSTICS statement. The program
uses the EX-COUNT and COUNTER variables as conditions for exception-
checking subroutines.
6-56 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO3.ECO
The program declares non-host COBOL variables ZERO-FIELD and
NOT-FND-FIELD to hold SQLSTATE values for Success ("00000") and No Data
Found ("02000"), respectively. The program declares the non-host COBOL
variable WHERE-ERROR as alphanumeric to hold an error message string.
The program also declares non-host COBOL variables COUNTER-F and
COUNT-DESC to print a statement once at the beginning of a fetch subroutine
and at the beginning of a print-descriptor subroutine, respectively.

21 *Declare variables.
22 *
23 DATA DIVISION.
24 WORKING-STORAGE SECTION.
25 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
26 77 RET-BUFFER PIC X(20).
27 77 DEMO-QUERY PIC X(50)
28 VALUE "SELECT FNAME, LNAME FROM CUSTOMER WHERE LNAME>?".
29 77 QUERY-VALUE PIC X(1) VALUE "C".
30 77 DESC-COUNT SQLINT.
31 77 DESC-INDEX SQLINT.
32 77 MESS-TEXT PIC X(254).
33 77 SQLSTATE-VAR PIC X(5).
34 77 EX-COUNT PIC S9(9) COMP-5.
35 77 COUNTER PIC S9(9) VALUE 1 COMP-5.
36 EXEC SQL END DECLARE SECTION END-EXEC.
37 *
38 77 ZERO-FIELD PIC X(5) VALUE "00000".
39 77 NOT-FND-FIELD PIC X(5) VALUE "02000".
40 77 WHERE-ERROR PIC X(72).
41 77 COUNTER-F PIC S9(9) VALUE 1 COMP-5.
42 77 COUNT-DESC PIC S9(9) VALUE 1 COMP-5.
43 *

Lines 44 through 95

The MAIN paragraph begins in the PROCEDURE DIVISION. MAIN controls the
sequence that performs each paragraph or subroutine and the iterations for
each paragraph or subroutine. The MAIN paragraph consists of instructions
for the database server to perform certain steps. When each step executes
successfully, the program performs those instructions in the following order:

1. Display messages on the screen to let you know that the
ESQL/COBOL program DEMO3 runs successfully and that the
program tests the SQL statements and clauses OPEN USING SQL
DESCRIPTOR and FETCH USING SQL DESCRIPTOR.

2. Open the database (in this case, stores7).
Dynamic Management in INFORMIX-ESQL/COBOL 6-57

Explanation of DEMO3.ECO
3. Prepare the query that was established in the WORKING-STORAGE
section as DEMO-QUERY.

4. Declare the cursor DEMOCURSOR.

5. Allocate a descriptor.

6. Obtain information about the prepared SELECT statement.

7. Open the cursor DEMOCURSOR.

8. Set SQLSTATE-VAR variable to "00000" and fetch the cursor
DEMOCURSOR until SQLSTATE-VAR does not equal "00000".

9. Close the cursor DEMOCURSOR when the program meets that condi-
tion.

10. Deallocate the previously allocated descriptor.

11. Disconnect from the current database.

12. Display "PROGRAM OVER" on the screen.

13. Execute the standard COBOL statement STOP RUN and exit the
program, returning you to the operating system prompt.
6-58 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO3.ECO
44 PROCEDURE DIVISION.
45 RESIDENT SECTION 1.
46 *
47 *Begin Main routine. Open a database, prepare a query,
48 *declare a cursor, allocate descriptors, execute a
49 *describe statement, open the cursor, fetch the cursor,
50 *and close the cursor.
51 *
52 MAIN.
53 DISPLAY ' '.
54 DISPLAY ' '.
55 DISPLAY 'DEMO3 SAMPLE ESQL PROGRAM RUNNING.'.
56 DISPLAY ' TEST SIMPLE DECLARE/OPEN/FETCH/LOOP'.
57 DISPLAY' '.
58 DISPLAY ' '.
59 DISPLAY 'PERFORM OPEN-DATABASE'.
60 DISPLAY ' '.
61 PERFORM OPEN-DATABASE.
62 DISPLAY ' '.
63 DISPLAY 'PERFORM PREPARE-QUERY'.
64 DISPLAY ' '.
65 PERFORM PREPARE-QUERY.
66 DISPLAY ' '.
67 DISPLAY 'PERFORM DECLARE-CURSOR'.
68 DISPLAY ' '.
69 PERFORM DECLARE-CURSOR.
70 DISPLAY ' '.
71 DISPLAY 'PERFORM ALLOCATE-DESCRIPTOR'.
72 DISPLAY ' '.
73 PERFORM ALLOCATE-DESCRIPTOR.
74 DISPLAY ' '.
75 DISPLAY 'PERFORM DESCRIBE-ID'.
76 DISPLAY ' '.
77 PERFORM DESCRIBE-ID.
78 DISPLAY ' '.
79 DISPLAY 'PERFORM OPEN-CURSOR'.
80 DISPLAY ' '.
81 PERFORM OPEN-CURSOR.
82 MOVE "00000" TO SQLSTATE-VAR.
83 DISPLAY ' '.
84 DISPLAY 'PERFORM FETCH-CURSOR'.
85 DISPLAY ' '.
86 PERFORM FETCH-CURSOR
87 UNTIL SQLSTATE-VAR NOT EQUAL TO ZERO-FIELD.
88 DISPLAY ' '.
89 DISPLAY 'PERFORM CLOSE-CURSOR'.
90 DISPLAY ' '.
91 PERFORM CLOSE-CURSOR.
92 EXEC SQL DISCONNECT CURRENT END-EXEC.
Dynamic Management in INFORMIX-ESQL/COBOL 6-59

Explanation of DEMO3.ECO
93 DISPLAY 'PROGRAM OVER'.
94 STOP RUN.
95 *

The following subsections individually describe the various PERFORM
statements that appear in the PROCEDURE division.

Lines 96 through 107

The OPEN-DATABASE subroutine opens the stores7 database using the
CONNECT embedded SQL statement. The SQL statement resides in the
COBOL program between the words EXEC SQL and END-EXEC.

A conditional IF statement returns the message ERROR ON DATABASE
STORES7 to the WHERE-ERROR variable when SQLSTATE does not equal
"00000". Such an error can occur when you do not create the stores7 database
before you open it.

If an error occurs during the execution of the OPEN-DATABASE subroutine,
the database server performs the ERROR-PROCESS subroutine.

96 *Subroutine to open a database.
97 *
98 OPEN-DATABASE.
99 DISPLAY ' '.

100 DISPLAY 'EXECUTING CONNECT STATEMENT'.
101 DISPLAY ' '.
102 EXEC SQL CONNECT TO 'STORES7' END-EXEC.
103 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
104 MOVE 'EXCEPTION ON DATABASE STORES7:'
105 TO WHERE-ERROR
106 PERFORM ERROR-PROCESS.
107 *

Lines 108 through 119

The PREPARE-QUERY subroutine uses the embedded dynamic SQL statement
PREPARE to prepare the query id variable QID from the DEMO-QUERY
variable declared in the DATA DIVISION. When the program prepares the
select cursor, the program passes the SELECT statement it represents to the
database server for a query on the stores7 database.
6-60 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO3.ECO
An IF statement returns the message ERROR ON PREPARE QUERY to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the PREPARE-QUERY subroutine, the
database server performs the ERROR-PROCESS subroutine.

108 *Subroutine to prepare a query.
109 *
110 PREPARE-QUERY.
111 DISPLAY ' '.
112 DISPLAY 'EXECUTING PREPARE STATEMENT'.
113 DISPLAY ' '.
114 EXEC SQL PREPARE QID FROM :DEMO-QUERY END-EXEC.
115 IF SQLSTATE IS NOT EQUAL TO ZERO-FIELD
116 MOVE 'ERROR ON PREPARE QUERY:'
117 TO WHERE-ERROR
118 PERFORM ERROR-PROCESS.
119 *

Lines 120 through 131

The DECLARE-CURSOR subroutine uses the embedded dynamic SQL
statement DECLARE to define DEMOCURSOR as a select cursor for the active
set of rows that the prepared QID statement id variable specifies. The
program uses DEMOCURSOR to manage data that the program reads from the
customer table.

The SELECT statement, that the embedded variable QID represents,
determines the type of data that the program reads from the table. The QID
variable represents a query on the first and last names of customers selected
from the customer table, where the LNAME begins with a letter that has a
higher ASCII value than the letter "C".
Dynamic Management in INFORMIX-ESQL/COBOL 6-61

Explanation of DEMO3.ECO
An IF statement returns the message ERROR ON DECLARE CURSOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the DECLARE-CURSOR subroutine, the
database server performs the ERROR-PROCESS subroutine.

120 *Subroutine to declare a cursor.
121 *
122 DECLARE-CURSOR.
123 DISPLAY ' '.
124 DISPLAY 'EXECUTING DECLARE-CURSOR STATEMENT'.
125 DISPLAY ' '.
126 EXEC SQL DECLARE DEMOCURSOR CURSOR FOR QID END-EXEC.
127 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
128 MOVE 'ERROR ON DECLARE CURSOR:'
129 TO WHERE-ERROR
130 PERFORM ERROR-PROCESS.
131 *

Lines 132 through 143

The ALLOCATE-DESCRIPTOR subroutine uses the embedded dynamic SQL
statement ALLOCATE DESCRIPTOR to allocate space in memory for a system
descriptor area that the quoted string desc identifies.

An IF statement returns the message ERROR ON ALLOCATE DESCRIPTOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the ALLOCATE-DESCRIPTOR subroutine,
the database server performs the ERROR-PROCESS subroutine.

132 *Subroutine to allocate a descriptor.
133 *
134 ALLOCATE-DESCRIPTOR.
135 DISPLAY ' '.
136 DISPLAY 'EXECUTING ALLOCATE DESCRIPTOR STATEMENT'.
137 DISPLAY ' '.
138 EXEC SQL ALLOCATE DESCRIPTOR 'desc' END-EXEC.
139 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
140 MOVE 'ERROR ON ALLOCATE DESCRIPTOR:'
141 TO WHERE-ERROR
142 PERFORM ERROR-PROCESS.
143 *
6-62 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO3.ECO
Lines 144 through 155

The DEALLOCATE-DESCRIPTOR subroutine uses the embedded dynamic SQL
statement DEALLOCATE DESCRIPTOR to free space previously allocated in
memory for a system descriptor area that the quoted string desc identifies.
When the program deallocates a system descriptor, the program frees all
associated item descriptors and memory for data values.

An IF statement returns the message ERROR ON DEALLOCATE DESCRIPTOR to
the WHERE-ERROR variable when SQLSTATE does not equal "00000". When
an error occurs during the execution of the DEALLOCATE-DESCRIPTOR
subroutine, the database server performs the ERROR-PROCESS subroutine.

144 *Subroutine to deallocate a descriptor.
145 *
146 DEALLOCATE-DESCRIPTOR.
147 DISPLAY ' '.
148 DISPLAY 'EXECUTING DEALLOCATE DESCRIPTOR STATEMENT'.
149 DISPLAY ' '.
150 EXEC SQL DEALLOCATE DESCRIPTOR 'desc' END-EXEC.
151 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
152 MOVE 'ERROR ON DEALLOCATE DESCRIPTOR:'
153 TO WHERE-ERROR
154 PERFORM ERROR-PROCESS.
155 *

Lines 156 through 174

The DESCRIBE-ID subroutine uses the embedded dynamic SQL statements
DESCRIBE and GET DESCRIPTOR to obtain information about the previously
allocated system descriptor area that the quoted string desc identifies.

The DESCRIBE statement returns the statement type and the number, data
types, and size of the values returned using the query on the LNAME and
FNAME columns in the customer table. QID is the data structure that repre-
sents the prepared SELECT statement.

The GET DESCRIPTOR statement gets values from the system descriptor area
that the descriptor desc identifies. The program sets the host variable
:DESC-COUNT to a value that represents the number of columns, in this case,
2 (for FNAME and LNAME).
Dynamic Management in INFORMIX-ESQL/COBOL 6-63

Explanation of DEMO3.ECO
An IF statement returns the message ERROR ON DESCRIBE to the screen
if SQLSTATE does not equal "00000" when the DESCRIBE statement
is executed. Another IF statement returns the message ERROR ON GET
DESCRIPTOR to the screen when SQLSTATE does not equal "00000" when that
statement executes. When an error occurs during the execution of the
DESCRIBE-ID subroutine, the database server performs the ERROR-
PROCESS subroutine.

156 *Subroutine to execute a describe statement.
157 *
158 DESCRIBE-ID.
159 DISPLAY ' '.
160 DISPLAY 'EXECUTING DESCRIBE STATEMENT'.
161 DISPLAY ' '.
162 EXEC SQL DESCRIBE QID
163 USING SQL DESCRIPTOR 'desc' END-EXEC.
164 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
165 MOVE 'ERROR ON DESCRIBE ID:'
166 TO WHERE-ERROR
167 PERFORM ERROR-PROCESS.
168 EXEC SQL GET DESCRIPTOR 'desc'
169 :DESC-COUNT=COUNT END-EXEC.
170 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
171 MOVE 'ERROR ON GET DESCRIPTOR:'
172 TO WHERE-ERROR
173 PERFORM ERROR-PROCESS.
174 *

Lines 175 through 186

The OPEN-CURSOR subroutine activates the select cursor DEMOCURSOR
using the embedded dynamic SQL statement OPEN. The clause USING
:QUERY-VALUE begins execution of the SELECT statement that the program
variable represents.

When the select cursor was prepared, the SELECT statement it represents was
passed to the database server. Here, the program also passes values specified
in the USING clause to the database server. Rather than construct the first row
of the active set for the query, the database server sets the SQLSTATE value.
When the program uses a valid SELECT statement, the program sets the value
of SQLSTATE to "00000".
6-64 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO3.ECO
An IF statement returns the message ERROR ON OPEN CURSOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the OPEN-CURSOR subroutine, the
database server performs the ERROR-PROCESS subroutine.

175 *Subroutine to open a cursor.
176 *
177 OPEN-CURSOR.
178 DISPLAY ' '.
179 DISPLAY 'EXECUTING OPEN-CURSOR STATEMENT'.
180 DISPLAY ' '.
181 EXEC SQL OPEN DEMOCURSOR USING :QUERY-VALUE END-EXEC.
182 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
183 MOVE 'ERROR ON OPEN CURSOR:'
184 TO WHERE-ERROR
185 PERFORM ERROR-PROCESS.
186 *

Lines 187 through 209

The FETCH-CURSOR subroutine uses the embedded dynamic SQL statement
FETCH to move the previously declared cursor DEMOCURSOR to a new row
in the active set and to retrieve the row values into memory for the COBOL
program to use. The FETCH statement uses the SQL descriptor desc that was
previously allocated in the ALLOCATE-DESCRIPTOR subroutine.

The PERFORM-UNTIL statement in the MAIN routine uses the SQLSTATE-VAR
variable i to check the result of the FETCH statement. As long as SQLSTATE
equals "00000", the program successfully fetched the data, and the subroutine
continues. When the program fetches all the data that meets the criteria, the
database server sets SQLSTATE to "02000" to indicate that no data exists.

As long as SQLSTATE does not equal "02000", meaning that not all of the data
has been fetched yet, the database server performs the PRINT-DESCRIPTOR
subroutine. The DEMO3.ECO program increments the DESC-INDEX descriptor
counter (initialized as 1) by 1 each time the program fetches a column in the
row, until the program meets the condition where the DESC-INDEX value
exceeds the DESC-COUNT value (2). The subroutine then displays the row
(FNAME and LNAME) on the screen. The conditional PERFORM-UNTIL
statement tests the condition before the program executes the set of
instructions.
Dynamic Management in INFORMIX-ESQL/COBOL 6-65

Explanation of DEMO3.ECO
An IF statement returns the message ERROR DURING FETCH to the WHERE-
ERROR variable when SQLSTATE does not equal "00000" and when SQLSTATE
does not equal "02000". When an error occurs during the execution of the
FETCH-CURSOR subroutine, the database server performs the ERROR-
PROCESS subroutine instead of the PRINT-DESCRIPTOR subroutine.

187 *Subroutine to fetch a cursor.
188 *
189 FETCH-CURSOR.
190 DISPLAY ' '.
191 IF COUNTER-F IS EQUAL TO 1
192 DISPLAY 'EXECUTING FETCH-CURSOR STATEMENT'.
193 ADD 1 TO COUNTER-F.
194 DISPLAY ' '.
195 EXEC SQL FETCH DEMOCURSOR
196 USING SQL DESCRIPTOR 'desc' END-EXEC.
197 MOVE SQLSTATE TO SQLSTATE-VAR.
198 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
199 AND
200 SQLSTATE NOT EQUAL TO NOT-FND-FIELD
201 MOVE 'ERROR DURING FETCH:'
202 TO WHERE-ERROR
203 PERFORM ERROR-PROCESS.
204 IF SQLSTATE NOT EQUAL TO NOT-FND-FIELD
205 PERFORM PRINT-DESCRIPTOR
206 VARYING DESC-INDEX FROM 1 BY 1
207 UNTIL DESC-INDEX>DESC-COUNT
208 DISPLAY ' '.
209 *

Lines 210 through 225

The PRINT-DESCRIPTOR subroutine uses the embedded dynamic SQL
statement GET DESCRIPTOR to obtain values from the system descriptor area
that the previously allocated descriptor desc identifies. It gets output values
for the :DESC-INDEX, that serves as a counter, and for the :RET-BUFFER, the
buffer that holds the data (FNAME and LNAME) that the FETCH statement
returns.

The PRINT-DESCRIPTOR subroutine, a loop, displays the first and last names
of the customers on the screen. The DEMOCURSOR selects a row from the
customer table and puts the data from that row into the host variable
RET-BUFFER (for FNAME and LNAME). WITH NO ADVANCING means that the
program displays each row containing an FNAME and LNAME on the same
line on the screen.
6-66 INFORMIX-ESQL/COBOL Programmer’s Manual

Explanation of DEMO3.ECO
An IF statement returns the message ERROR ON GET DESCRIPTOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the PRINT-DESCRIPTOR subroutine, the
database server performs the ERROR-PROCESS subroutine.

210 *Subroutine to print a descriptor. Display data (names).
211 *
212 PRINT-DESCRIPTOR.
213 DISPLAY ' '.
214 IF COUNT-DESC IS EQUAL TO 1
215 DISPLAY 'EXECUTING GET DESCRIPTOR STATEMENTS'.
216 ADD 1 TO COUNT-DESC.
217 DISPLAY ' '.
218 EXEC SQL GET DESCRIPTOR 'desc' VALUE :DESC-INDEX
219 :RET-BUFFER=DATA END-EXEC.
220 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
221 MOVE 'ERROR ON GET DESCRIPTOR:'
222 TO WHERE-ERROR
223 PERFORM ERROR-PROCESS.
224 DISPLAY RET-BUFFER, ' ' WITH NO ADVANCING.
225 *

Lines 226 through 237

The CLOSE-CURSOR subroutine closes the cursor DEMOCURSOR using the
embedded dynamic SQL statement CLOSE. It disassociates the cursor from
the SELECT statement and stops the query process.

An IF statement returns the message ERROR ON OPEN CURSOR to the
WHERE-ERROR variable when SQLSTATE does not equal "00000". When an
error occurs during the execution of the CLOSE-CURSOR subroutine, the
database server performs the ERROR-PROCESS subroutine.

226 *Subroutine to close a cursor.
227 *
228 CLOSE-CURSOR.
229 DISPLAY ' '.
230 DISPLAY 'EXECUTING CLOSE-CURSOR STATEMENT'.
231 DISPLAY ' '.
232 EXEC SQL CLOSE DEMOCURSOR END-EXEC.
233 IF SQLSTATE NOT EQUAL TO ZERO-FIELD
234 MOVE 'ERROR ON OPEN CURSOR:'
235 TO WHERE-ERROR
236 PERFORM ERROR-PROCESS.
237 *
Dynamic Management in INFORMIX-ESQL/COBOL 6-67

Explanation of DEMO3.ECO
Lines 238 through 248

The ERROR-PROCESS subroutine contains the process that counts SQLSTATE
exceptions. That subroutine executes whenever an error occurs in one of the
other subroutines. The DEMO3.ECO program stops running whenever the
ERROR-PROCESS subroutine encounters an SQLCODE value not equal to
ZERO.

SQLSTATE indicates the result of executing an SQL statement ("00000",
"02000", or a value greater than "02000"). The GET DIAGNOSTICS NUMBER
field contains the count of exceptions associated with the SQLSTATE code. The
PERFORM UNTIL statement executes the EX-LOOP subroutine that displays an
error message for each exception.

238 *Subroutine to check for exceptions.
239 *
240 ERROR-PROCESS.
241 DISPLAY WHERE-ERROR.
242 DISPLAY 'THE SQLSTATE CODE IS: ', SQLSTATE.
243 DISPLAY '*********************************'.
244 EXEC SQL GET DIAGNOSTICS :EX-COUNT=NUMBER END-EXEC.
245 PERFORM EX-LOOP UNTIL COUNTER IS GREATER THAN EX-COUNT.
246 IF SQLCODE NOT EQUAL TO ZERO
247 STOP RUN.
248 *

Lines 249 through 260

The EX-LOOP subroutine displays the exception number and the error
message for each SQLSTATE exception.

249 *Subroutine to print exception messages.
250 *
251 EX-LOOP.
252 EXEC SQL
253 GET DIAGNOSTICS EXCEPTION :COUNTER
254 :MESS-TEXT=MESSAGE_TEXT
255 END-EXEC.
256 DISPLAY 'EXCEPTION ', COUNTER.
257 DISPLAY 'MESSAGE TEXT IS: ', MESS-TEXT.
258 DISPLAY '*****************************'.
259 ADD 1 TO COUNTER.
260 *
6-68 INFORMIX-ESQL/COBOL Programmer’s Manual

A
Appendix
List of INFORMIX-
ESQL/COBOL Routines
The table on the following page alphabetically lists the routines
included with the INFORMIX-ESQL/COBOL library. It includes
cross-references to the chapter that discusses the routine.

Warning: Informix encourages you to try the available examples for
these routines using the MF COBOL/2 compiler. If you use the
RM/COBOL-85 compiler, the example programs for the routines listed
on the next page generate warnings and, in some cases, do not work at
all. The examples for the following DATE routines, discussed in Chap-
ter 3, do not compile correctly with RM/COBOL-85: ECO-DAT, ECO-
DAY, ECO-DEF, ECO-FMT, ECO-JUL, ECO-LYR, ECO-MDY, ECO-STR,
ECO-TDY.

List of Routines
List of Routines

Routine Description Page

ECO-DAI Adds an INTERVAL string to a DATETIME string 3-38

ECO-DAT Converts an internal format to a string 3-7

ECO-DAY Returns the day of the week 3-10

ECO-DEF Converts a string to an internal format 3-13

ECO-DSH Converts a character string to lowercase 2-14

ECO-DSI Subtracts an INTERVAL value from a DATETIME value 3-42

ECO-DTC Determines the current DATETIME value 3-45

ECO-DTCVASC Converts a specified format string to ANSI DATETIME
format

3-47

ECO-DTS Subtracts two DATETIME strings 3-52

ECO-DTTOASC Converts a ANSI DATETIME string to a specified for-
mat

3-57

ECO-DTX Extends a DATETIME value to a different qualifier 3-62

ECO-FFL Returns a character string for a floating-point value 2-41

ECO-FIN Returns a character string for an INTEGER value 2-43

ECO-FMT Converts an internal format to a string 3-18

ECO-GST Checks the SQLCODE OF SQLCA variable for three
routines

2-20

ECO-IDI Divides an INTERVAL value by an INTERVAL value 3-65

ECO-IDN Divides an INTERVAL value by a numeric value 3-69

ECO-IMN Multiplies an INTERVAL value by a numeric value 3-73

ECO-INCVASC Converts a specified format string to ANSI INTERVAL
format

3-77

 (1 of 2)
A-2 INFORMIX-ESQL/COBOL Programmer’s Manual

List of Routines
ECO-INTOASC Converts ANSI INTERVAL string to a specified ASCII
format

3-82

ECO-INX Extends an INTERVAL value to a different qualifier 3-87

ECO-IQU Determines an INTEGER qualifier for a character-
string qualifier

3-90

ECO-JUL Returns the month, day, and year from an internal
format

3-23

ECO-LYR Determines whether it is a leap year 3-26

ECO-MDY Returns an internal format from the month, day, and
year

3-28

ECO-MSG Converts an error message number into a message
string

4-41

ECO-SIG Allows the Informix library to perform signal han-
dling

5-28

ECO-SQB Sends the database server a request to stop process-
ing

5-31

ECO-SQBCB Registers a callback function 5-32

ECO-SQC Checks the SQLCA record codes for three routines 2-21

ECO-SQD Checks if database server is processing an SQL task 5-35

ECO-SQE Terminates a database server process 5-37

ECO-SQS Starts a database server process 5-41

ECO-SQU Determines a character-string qualifier for an
INTEGER qualifier

3-93

ECO-STR Converts a string to an internal format 3-31

ECO-TDY Returns the system date in an internal format 3-33

ECO-USH Converts a character string to uppercase 2-17

Routine Description Page

 (2 of 2)
List of INFORMIX-ESQL/COBOL Routines A-3

Index

Index
A
Adding INTERVAL to DATETIME

routine 3-38
ALLOCATE DESCRIPTOR

statement, use in dynamic
SQL 6-5

Allocating memory
dynamically 6-10
using a system descriptor area 6-5
with ALLOCATE

DESCRIPTOR 6-22
ansi flag

and -xopen flag warnings 1-40
checking for Informix

extensions 1-40
compiling programs with 1-36

ANSI SQL Standards
for DATETIME values 3-36
for INTERVAL values 3-36

ANSI-standard syntax, how to
check for 1-39

Array
and non-null SQL value 1-24
use within ESQL/COBOL

statements 1-24

B
Blobs

example program 2-29
programming with 2-25
use in dynamic SQL 2-27

Break routine 5-31
BYTE data type 2-25

C
Callback procedure

CALLPROC example
program 5-22

cancelling SQL processing 5-13
CAN-QRY example program 5-18
checking SQL processing

status 5-13
comparison with other

procedures 5-16
described 5-13
discussion 5-13
example of 5-22
example of calling program 5-18
output from 5-25
process 5-14
rules for creating 5-17
status variable 5-17
using 5-13

CHAR data type 2-11
Character conversion routine

ECO-DSH 2-14
ECO-USH 2-17

Character string
converting to lowercase 2-14
converting to uppercase 2-17
for INTEGER qualifier

routine 3-93
in date routine 3-18

Client process 5-5
Client-server architecture 5-4
Client-server connections

connecting to a database
server 5-6

local 5-5
remote 5-5

remote, using Relay Module 5-6
sqlhosts file 5-7

COBOL data types
MF COBOL/2 compiler PICTURE

clauses 3-5
RM/COBOL 85 compiler

PICTURE clauses 3-5
shown for CHAR routine

arguments 2-12
shown for COBOL

descriptions 2-12, 2-32, 3-5,
4-41

shown for DATE routine
arguments 3-5

shown for ECO-MSG routine
arguments 4-41

shown for routine arguments 2-32
COBOL program structure

correspondence with SQL 2-4
embedding SQL statements 1-9
host variables 1-21
indicator variables 1-24
statement format 1-13
using SQL syntax 1-9

COBOL routines
compiling 1-32
embedding SQL statements in 1-9
listed A-2

COBOL statement format in source
program 1-13

Colon (:)
after main variable 1-26
before host variable 1-21
before indicator variable 1-26

Comments, including in
programs 1-17

COMP equivalents
for CHAR routines 2-12
for ECO-MSG routine 4-42
for numeric-formatting

routines 2-32
Compiled program, running 1-42
Compiler

creating an object file 1-32
diagnosing errors 1-22
linking library routines 2-13, 3-3,

5-27
syntax for esqlcobol

command 1-33

syntax for preprocessor naming
options 1-36

Compiler flag
-ansi 1-36, 1-40, 1-41
-bigB 1-36
-comp89 1-36
-e 1-33, 1-35
-ED 1-36, 1-42
-esqlout 1-36
-EU 1-37, 1-42
-I 1-37
-icheck 1-28, 1-37, 1-40
-local 1-37, 1-41
-log 1-37, 1-41
-n 1-33, 1-35
-native 1-33
-o 1-34
-t 1-37
testing for 1-29
-V 1-37
-w 1-37
-xopen 1-37, 1-40, 1-41

Compiling
checking for ANSI-standard

syntax 1-39
checking for missing indicator

variables 1-40
checking the version number 1-37
displaying the processing

steps 1-35
in X/Open mode 1-41
limiting the scope of cursor

names 1-41
limiting the scope of statement

ids 1-41
preprocessing only 1-35
redirecting errors and

warnings 1-41
syntax for embedded SQL

programs 1-32
with the esqlcobol command 1-32
with the -icheck flag 1-28

Constants, statement type 6-16
Conversion

how discrepancies are
handled 2-10

INTERVAL to ASCII string,
routine 3-82

of CHARACTER data 2-8

of DATE data 2-9
of DECIMAL data 2-9
of FLOAT data 2-9
of INTEGER data 2-8
of SMALLFLOAT data 2-9
of SMALLINT data 2-8
to DATETIME string, routine

for 3-47
to INTERVAL string, routine

for 3-77
Converting dates, routines for 3-4
COPY statements 1-32
Current DATETIME routine 3-45
Cursor names

in dynamic SQL 6-5
limiting the scope with the -local

option 1-41

D
Data conversion

among data types 2-10
DATE 2-9
DECIMAL 2-9
FLOAT 2-9
problems 2-10
SMALLFLOAT 2-9

DATA field 6-12
Data types

BYTE 2-25
CHAR 2-11
correspondence 2-4
DATE 3-3
DATETIME 3-35
declaration for GET

DESCRIPTOR 6-7
declaration for SET

DESCRIPTOR 6-7
INTERVAL 3-35
TEXT 2-25
type conversion 2-10
VARCHAR 2-22

Database server connection
using DISCONNECT

statement 5-12
Database server connections

current 5-9
default 5-10
2 INFORMIX-ESQL/COBOL Programmer’s Manual

dormant 5-9
establishing 5-11
explicit 5-8
implicit 5-9
multiple 5-8
specific 5-11
terminating 5-12
types 5-8
using CONNECT TO DEFAULT

statement 5-11
using CONNECT TO

statement 5-11
using CREATE DATABASE

statement 5-12
using DATABASE statement 5-12
using DISCONNECT ALL

statement 5-12
using DISCONNECT CURRENT

statement 5-12
using DISCONNECT DEFAULT

statement 5-12
using DROP DATABASE

statement 5-12
using ECO-SQE routine 5-12
using ECO-SQS routine 5-12
using SET CONNECTION

statement 5-12
using START DATABASE

statement 5-12
Database server control routine

break 5-31, 5-32, 5-35
check SQL processing status 5-35
ECO-SIG 5-28
ECO-SQB 5-31, 5-37
ECO-SQBCB 5-32
ECO-SQD 5-35
ECO-SQS 5-41
exit 5-37
register callback procedure 5-32
signal handling 5-28
start 5-41
start a connection 5-41
stop SQL processing 5-31
terminate all connections 5-37

Date conversion routine 3-7
DATE data type 3-3
DATE manipulation routine

ECO-DAT 3-7
ECO-DAY 3-10

ECO-DEF 3-13
ECO-FMT 3-18
ECO-JUL 3-23
ECO-LYR 3-26
ECO-MDY 3-28
ECO-STR 3-31
ECO-TDY 3-33

Date string conversion routine 3-13
DATETIME data type 3-35
DATETIME manipulation routine

ECO-DAI 3-38
ECO-DSI 3-42
ECO-DTC 3-45
ECO-DTCVASC 3-47
ECO-DTS 3-52
ECO-DTTOASC 3-57
ECO-DTX 3-62
ECO-IQU 3-90
ECO-SQU 3-93

DATETIME value, extending to a
different qualifier 3-62

Day of week routine 3-10
DBANSIWARN environment

variable 1-39
DBTIME environment variable

when to use 3-36
DEALLOCATE DESCRIPTOR

statement, use in dynamic
SQL 6-5

Declaration
and FILLER keyword 1-16
of dynamic cursor names 1-41
of dynamic statement ids 1-41
of group items and arrays 1-23
of host variables 1-21
of indicator variables 1-26
of non-host program

variables 1-22
of variables outside the

DECLARE section 1-23
DEFINE preprocessor

instruction 1-29
Defining values while

preprocessing 1-42
DEMO1.ECO program

complete example shown 1-46
line-by-line explanation 1-48

DEMO2.ECO program
complete example shown 6-35

line-by-line explanation 6-39
DEMO3.ECO program

complete example shown 6-49
line-by-line explanation 6-54

Demonstration database
DEMO1.ECO program 1-46
DEMO2.ECO program 6-35
DEMO3.ECO program 6-49
example programs 6-34

DESCRIBE statement, use in
dynamic SQL 6-5

Descriptor
and system descriptor area 6-5
in demo programs 6-34

Dollar sign ($)
displaying a literal 2-34
floating 2-34

Downshifting character strings
with ECO-DSH 2-14

Dynamic management
implemented in two demo

programs 6-34
SQL statements and

techniques 6-7
Dynamic SQL

allocating memory 6-10
and backward compatibility in

programs 1-41
and blobs 2-27
and stored procedures 6-29
creating stored procedures 6-30
descriptor statements 6-5
executing stored procedures 6-29
four statement types

described 6-8
localizing dynamic cursor

names 1-37
localizing dynamic statement

identifier names 1-37
non-parameterized non-SELECT

statements 6-27
non-parameterized SELECT

statements 6-8, 6-24
parameterized non-SELECT

statements 6-26
parameterized SELECT

statements 6-8, 6-19
program examples 6-34
programming with 6-4
Index 3

sample program using stored
procedures 6-30

SELECT statements that receive
WHERE-clause values at run
time 6-19

SELECT statements where select -
list values are determined at
run time 6-24

statement type constants for 6-16
statements that do not receive

values at run time 6-27
statements that receive values at

run time 6-26
use in programming 6-4
using a system descriptor

area 6-10
when to use 6-8
working with a system descriptor

area 6-6

E
ECO-DAI routine 3-38
ECO-DAT routine 3-7
ECO-DAY routine 3-10
ECO-DEF routine 3-13
ECO-DSH routine 2-14
ECO-DSI routine 3-42
ECO-DTC routine 3-45
ECO-DTCVASC routine 3-47
ECO-DTS routine 3-52
ECO-DTTOASC routine 3-57
ECO-DTX routine 3-62
ECO-FFL routine 2-41
ECO-FIN routine 2-43
ECO-FMT routine 3-18
ECO-GST routine 2-20
ECO-IDI routine 3-65
ECO-IDN routine 3-69
ECO-IMN routine 3-73
ECO-INCVASC routine 3-77
ECO-INTOASC routine 3-82
ECO-INX routine 3-87
ECO-IQU routine 3-90
ECO-JUL routine 3-23
ECO-LYR routine 3-26
ECO-MDY routine 3-28
ECO-MSG routine 4-41

ECO-SIG routine 5-28
ECO-SQB routine 5-31, 5-32, 5-35
ECO-SQBCB routine 5-32
ECO-SQC routine 2-21
ECO-SQD routine 5-35
ECO-SQE routine 5-37
ECO-SQS routine 5-41
ECO-SQU routine 3-93
ECO-STR routine 3-31
ECO-TDY routine 3-33
ECO-USH routine 2-17
ELIF preprocessor instruction 1-30
ELSE preprocessor instruction 1-30
Embedded SQL statements

compiling and preprocessing 1-32
in COBOL routines 1-9

END-EXEC
in BEGIN DECLARE section 1-21
with SQL statement 1-17

ENDIF preprocessor
instruction 1-30

Environment variables
DBANSIWARN 1-39
DBTIME 1-5
INFORMIXCOBTYPE 1-5
to specify compiler 1-5
to specify location of run-time

library 1-5
using INFORMIXCOBSTORE 2-7
what to set 1-5

Error handling
and the WHENEVER

statement 1-20, 4-29
checking for errors using GET

DIAGNOSTICS 4-25
checking for errors using in-line

code 4-26
example program using GET

DIAGNOSTICS 4-45
obtaining diagnostic information

after an SQL statement 4-4
overview 4-3
result codes

error 4-24
no data found, end of data 4-22
success 4-22
success with warning 4-22

SQL statement result codes 4-21
using GET DIAGNOSTICS 4-4

Error message conversion routine,
ECO-MSG 4-41

Errors
after a GET DIAGNOSTICS

statement 4-25
after a PREPARE statement 4-24
after an EXECUTE statement 4-24
automatically checking for 4-29
redirecting with the -log

option 1-41
esqlcobol

command-line syntax 1-33
compiling with the shell

script 1-32
linking run-time routines 2-13,

3-3, 5-27
preprocessor naming options 1-36
using to preprocess, compile, and

link 1-34
ESQL/COBOL library

list of all routines A-2
list of CHAR routines 2-13
list of DATE routines 3-4
list of DATETIME and

INTERVAL routines 3-35
list of numeric-formatting

routines 2-31
Example programs

DEMO1.ECO 1-46
DEMO2.ECO 6-35
DEMO3.ECO 6-49
in demonstration database 6-34

EXEC SQL
in BEGIN DECLARE section 1-21
with SQL statement 1-17

EXECUTE IMMEDIATE statement,
use in dynamic SQL 6-28

EXECUTE INTO
replacing PREPARE, OPEN, and

FETCH 6-33
using in dynamic program 6-33
using with stored procedures 6-33

EXECUTE statement
errors after 4-24
in dynamic SQL 6-27

Exit routine 5-37
4 INFORMIX-ESQL/COBOL Programmer’s Manual

Expressions
formatting 2-31
routines for formatting numeric

ones 2-31
table of numeric format

strings 2-33

F
File extension

.cbl 1-34

.cob 1-33, 1-34

.eco 1-32, 1-34

.exe 1-34

.INT 1-34
FILLER keyword 1-16
Formatting numeric expressions

examples 2-34
overview 2-31
strings 2-33
valid characters 2-33

Formatting routines, numeric 2-31
Function calls

CHAR type routines listed 2-13
DATE type routines listed 3-3
DATETIME type routines

listed 3-35
INTERVAL type routines

listed 3-35
Numeric-formatting routines

listed 2-31

G
GET DESCRIPTOR statement, use

in dynamic SQL 6-6
GET DIAGNOSTICS

CLASS_ORIGIN field 4-5
CONNECTION_NAME field 4-6
detecting and handling errors 4-4
diagnosing multiple errors 4-16
exception information 4-5
MESSAGE_LENGTH field 4-6
MESSAGE_TEXT field 4-6
MORE field 4-5
multiple error conditions 4-16

NUMBER field 4-5
overview 4-4
RETURNED_SQLSTATE field 4-5
ROW_COUNT field 4-5
SERVER_NAME field 4-6
statement information 4-4
SUBCLASS_ORIGIN field 4-5
usage 4-7
using full error checking 4-45

Group items declared as host
variables 1-23

H
Host variables

and arrays 1-24
and group items 1-23
and VALUE clauses 1-22
choosing data types for 2-4
COBOL features not recognized

in declarations 1-22
declared with COBOL initializer

expressions 1-22
definition of 1-21
how to declare 1-21
in parameterized SELECT

statement 6-20
preceded by colon 1-21
use of VARCHAR in

programming 2-23
used in place of a constant 1-12
what is allowed in PICTURE

clause 2-5
what is not allowed in PICTURE

clause 2-5
with parameterized

statements 6-26

I
icheck flag, compiling programs

with 1-37
IDATA field 6-12
IFDEF preprocessor

instruction 1-29
IFNDEF preprocessor

instruction 1-29

ILENGTH field 6-12
INCLUDE preprocessor instruction

compared to COBOL COPY
statement 1-32

definition of 1-29
syntax 1-31

INDICATOR field 6-12
INDICATOR keyword, and

indicator variable 1-26
Indicator variables

and associated host
variables 1-24, 1-28

and INDICATOR keyword 1-26
and null values 1-27
checking for missing ones with -

icheck compiler option 1-40
defined 1-24
how to declare 1-26
main variable 1-25
truncation of 1-24, 1-25
used in place of a constant 1-12
with null and not null values 1-24

INFORMIXCOBSTORE
environment variable 2-7

INTEGER date conversion
routine 3-31

INTEGER qualifier for character
string routine 3-90

Interactive programs and dynamic
SQL 6-4

INTERVAL added to DATETIME
routine 3-38

INTERVAL data type 3-35
INTERVAL manipulation routine

ECO-DAI 3-38
ECO-DSI 3-42
ECO-IDI 3-65
ECO-IDN 3-69
ECO-IMN 3-73
ECO-INCVASC 3-77
ECO-INTOASC 3-82
ECO-INX 3-87
ECO-IQU 3-90
ECO-SQU 3-93
Index 5

INTERVAL value
divided by INTERVAL value 3-65
divided by numeric value 3-69
extended to a different

qualifier 3-87
multiplied by a numeric

value 3-73
ITYPE field 6-12

J
Julian date routine 3-23

L
Leap year routine 3-26
LENGTH field 6-12
Library routines

complete list A-2
ECO-DAI 3-38
ECO-DAT 3-7
ECO-DAY 3-10
ECO-DEF 3-13
ECO-DSH 2-14
ECO-DSI 3-42
ECO-DTC 3-45
ECO-DTCVASC 3-47
ECO-DTS 3-52
ECO-DTTOASC 3-57
ECO-DTX 3-62
ECO-FFL 2-41
ECO-FIN 2-43
ECO-FMT 3-18
ECO-GST 2-20
ECO-IDI 3-65
ECO-IDN 3-69
ECO-IMN 3-73
ECO-INCVASC 3-77
ECO-INTOASC 3-82
ECO-INX 3-87
ECO-IQU 3-90
ECO-JUL 3-23
ECO-LYR 3-26
ECO-MDY 3-28
ECO-MSG 4-41
ECO-SIG 5-28
ECO-SQB 5-31, 5-32, 5-35
ECO-SQC 2-21

ECO-SQE 5-37
ECO-SQS 5-41
ECO-SQU 3-93
ECO-STR 3-31
ECO-TDY 3-33
ECO-USH 2-17
included in ESQL/COBOL

library 2-13, 2-31, 3-4, 3-35,
5-27, A-2

using esqlcobol 2-13, 3-3
Linking, with preprocessing and

compiling 1-34
local flag, compiling programs

with 1-37, 1-41
Localized DATETIME format

routine 3-57
log flag, compiling programs

with 1-37, 1-41

M
Manipulating DATE types

ECO-DAT routine 3-7
ECO-DAY routine 3-10
ECO-DEF routine 3-13
ECO-FMT routine 3-18
ECO-JUL routine 3-23
ECO-LYR routine 3-26
ECO-MDY routine 3-28
ECO-STR routine 3-31
ECO-TDY routine 3-33

Manipulating DATETIME types
ECO-DAI routine 3-38
ECO-DSI routine 3-42
ECO-DTC routine 3-45
ECO-DTCVASC routine 3-47
ECO-DTS routine 3-52
ECO-DTTOASC routine 3-57
ECO-DTX routine 3-62
ECO-IQU routine 3-90
ECO-SQU routine 3-93

Manipulating INTERVAL types
ECO-DAI routine 3-38
ECO-DSI routine 3-42
ECO-IDI routine 3-65
ECO-IDN routine 3-69
ECO-IMN routine 3-73
ECO-INCVASC routine 3-77

ECO-INTOASC routine 3-82
ECO-INX routine 3-87

Memory allocation
and the system descriptor

area 6-10
in dynamic SQL statements 6-5

Micro Focus COBOL
customizing a run-time

program 1-9
numbers for subroutine

names 1-17
run-time program for 1-9
standard integer in 3-5
storage allocation 2-6
using BINARY or COMP data 2-6

Month, day, year routine 3-28

N
NAME field 6-13
native flag, compiling programs

with 1-33
Non-parameterized non-SELECT

statements 6-9, 6-27
Non-parameterized SELECT

statements 6-8, 6-24
Null values

and indicator variables 1-27
and the -icheck flag 1-28

NULLABLE field 6-13
Numeric expressions

example formats 2-34
formatting 2-31
valid characters 2-33

Numeric-formatting routine
ECO-FFL 2-41
ECO-FIN 2-43

O
Option

-ansi 1-36, 1-40, 1-41
-bigB 1-36
-comp89 1-36
-e 1-33, 1-35
-ED 1-36, 1-42
-esqlout 1-36
-EU 1-37, 1-42
6 INFORMIX-ESQL/COBOL Programmer’s Manual

-I 1-37
-icheck 1-28, 1-37, 1-40
-local 1-37, 1-41
-log 1-37, 1-41
-n 1-33, 1-35
-native 1-33
-o 1-34
-t 1-37
-V 1-37
-w 1-37
-xopen 1-37, 1-40, 1-41

P
Parameterized non-SELECT

statements
description of 6-9, 6-26
using a system descriptor

area 6-27
using host variables 6-26

Parameterized SELECT statements
description of 6-8, 6-19
using a system descriptor

area 6-21
using host variables 6-20

PICTURE clause
for DATE data type columns 3-4
for ECO-MSG arguments 4-42
relationship to SQL data types 2-7
what is allowed for host

variables 2-5
what is not allowed for host

variables 2-5
where to declare 2-5

PRECISION field 6-13
PREPARE statement

errors after 4-24
in dynamic SQL 6-27
missing WHERE signalled 4-20

Preprocessing
checking for ANSI-standard

syntax 1-39
checking for missing indicator

variables 1-40
including alternative SQLCA

header files 1-38
with compiling and linking 1-34
without compiling 1-35

Preprocessor
conditional compilation of

ESQL/COBOL
statements 1-29

defining and undefining
values 1-42

detecting tabs 1-16
embedding SQL/COBOL

routines 1-32
redirecting errors and

warnings 1-41
search sequence for included

files 1-31
statements handled 1-29
subroutine names 1-17
supported instructions 1-29
syntax for options 1-36

Preprocessor instructions
DEFINE 1-29
ELIF 1-30
ELSE 1-30
ENDIF 1-30
IFDEF 1-29
IFNDEF 1-29
INCLUDE 1-29
UNDEF 1-29

Procedure, see Callback
Procedure 5-13

Processing
and INCLUDE statement 1-32
displaying steps without

executing 1-35
sequence of occurrence 1-34

Program
compiling 1-32
example, DEMO1.ECO 1-46
example, DEMO2.ECO 6-35
example, DEMO3.ECO 6-49
using the SQLCODE variable 4-21

Programming
compiling your programs 1-32
declaring group items and

arrays 1-23
declaring host variables 1-21
declaring indicator variables 1-26
embedding SQL statements 1-9
error handling 1-19
full error checking using GET

DIAGNOSTICS 4-45

including comments 1-17
indicator variables and null

values 1-27
reserved words and

conventions 1-17
the COBOL statement format 1-13
using host variables 1-21
using indicator variables 1-24
using the preprocessor 1-29
using the SQLCA record 1-19
with dynamic SQL statements 6-4

Q
Question mark (?)

in dynamic SQL statements 6-4
in parameterized SELECT

statements 6-19
in PICTURE clause 2-12, 2-32, 4-42
use in programming 6-4

R
Reserved words

finding with the -ansi flag 1-40
in COBOL 1-17
in SQL statements 1-17

Routines
complete list A-2
database server 5-27
ECO-DAI 3-38
ECO-DAT 3-7
ECO-DAY 3-10
ECO-DEF 3-13
ECO-DSH 2-14
ECO-DSI 3-42
ECO-DTC 3-45
ECO-DTCVASC 3-47
ECO-DTS 3-52
ECO-DTTOASC 3-57
ECO-DTX 3-62
ECO-FIN 2-43
ECO-FMT 3-18
ECO-GST 2-20
ECO-IDI 3-65
ECO-IDN 3-69
ECO-IMN 3-73
ECO-INCVASC 3-77
Index 7

ECO-INTOASC 3-82
ECO-INX 3-87
ECO-IQU 3-90
ECO-JUL 3-23
ECO-LYR 3-26
ECO-MDY 3-28
ECO-SIG 5-28
ECO-SQB 5-31, 5-32, 5-35
ECO-SQC 2-21
ECO-SQE 5-37
ECO-SQS 5-41
ECO-SQU 3-93
ECO-STR 3-31
ECO-TDY 3-33
ECO-USH 2-17
that work with the database

server 5-27
Running a compiled program 1-42
Run-time program

for Micro Focus COBOL 1-9
for Ryan-McFarland COBOL 1-7

Ryan-McFarland COBOL
compiler flag for 1-37
customizing a run-time

program 1-7
run-time program for 1-7
standard integer in 3-5

S
Sample program

DEMO1.ECO 1-45
DEMO2.ECO 6-35
DEMO3.ECO 6-49

SCALE field 6-13
SELECT statement

non-parameterized 6-8, 6-24
parameterized 6-8, 6-19
that receives WHERE-clause

values at run time 6-19
where select-list values are

determined at run time 6-24
Select-list values, determined at run

time 6-24
Server control routine

break 5-31
exit 5-37
start 5-41

Server process 5-5
SET DESCRIPTOR statement, use in

dynamic SQL 6-6
Signal-handling routine, ECO-

SIG 5-28
SQL

allocating space in memory 6-5
and END-EXEC keyword 1-17
and EXEC SQL keywords 1-17
choosing data types for host

variables 2-4
conversion of data types 2-7
correspondence with COBOL

data types 2-4
embedding statements in COBOL

routines 1-9
four types of dynamic

statements 6-8
use in COBOL 1-9

SQL processing
breaking 5-31
checking status of 5-35

SQL statements
dynamic 6-3
INTEGER type constants for 6-16

SQLCA record
checking for routines without

STATUS 2-20, 2-21
signaling truncation 1-25

SQLCODE variable, using in
programs 4-21

sqlda structure. See system
descriptor area. 6-10

sqlhosts file, setting up 5-7
SQLSTATE variable

class code 4-9
error status code 4-9
structure 4-9
subclass code 4-9
using in applications 4-14
using with GET

DIAGNOSTICS 4-9
valid codes, list of 4-11

Start routine 5-41
Statement ids

in dynamic SQL 6-5
limiting the scope with the -local

option 1-41

Statement type constants in
dynamic SQL 6-16

Statements used in dynamic
SQL 6-3

Storage allocation for Micro Focus
COBOL 2-6

Stored procedures
creating 6-30
executing dynamically 6-30
sample program 6-30
using EXECUTE INTO statement

within 6-33
using with dynamic SQL 6-29

Strings, formatting numeric 2-33
Subtracting two DATETIME values

routine 3-52
System date routine 3-33
System descriptor area

allocating space in memory 6-5
and descriptor statements 6-5
data types for 6-6
fields defined 6-12
using 6-10
values for TYPE and ITYPE

fields 6-13
with non-parameterized non-

SELECT statements 6-27
with parameterized

statements 6-27

T
TEXT data type 2-25
Truncation

avoiding with SQL and COBOL
data types 2-7

conversion problems 2-10
of indicator variable 1-25
of SQL variable 1-24
signaled in SQLCA record 1-25

TYPE field 6-13

U
UNDEF preprocessor

instruction 1-29
Undefining values while

preprocessing 1-42
8 INFORMIX-ESQL/COBOL Programmer’s Manual

UPDATE statement, missing
WHERE signalled 4-20

Upshifting character strings with
ECO-USH 2-17

V
VALUE clauses 1-22
Values

defining and undefining with
preprocessor options 1-42

determined at run time in
SELECT statement 6-24

holding standard date 6-7
not received at run time by non-

SELECT statement 6-27
received at run time by non-

SELECT statement 6-26
received at run time by SELECT

statement 6-19
returned from a FETCH

statement 6-7
returned from a query 6-24
storing julian dates 6-7
that change at run time 6-4

VARCHAR
data type 2-22
host variables, programming

with 2-23
Variable

character data type 2-22
host 1-21
indicator 1-24
SQLCODE 4-21
truncation 1-24

Version number, how to check 1-37

W
WARN example program 4-36
Warnings

and SQLWARN OF SQLCA 1-40,
2-11

and the ECO-GST routine 2-20
and the ECO-SQC routine 2-21
checking for

using sqlca structure 4-38

checking with the
DBANSIWARN environment
variable 1-39

diagnosing with GET
DIAGNOSTICS
statement 4-35

generated for both -ansi and -
xopen flags 1-40

generated for various SQL
statements 4-35

generating with the -ansi
flag 1-36, 1-40

redirecting with the -log
option 1-41

sample program 4-36
sending to specified file 1-37
trapping with the WHENEVER

statement 1-20
using the SQLWARNING

keyword 4-38
WARN example program 4-36

WHENCHK example program 4-31
WHENEVER STATEMENT

executing a call 4-29
WHENEVER statement

continuing execution 4-29
discussion 4-29
example program 4-31
executing a call 4-29
stopping execution 4-29
trapping errors 4-29
trapping warnings 4-29
use 4-29
using GOTO within 4-29
using PERFORM within 4-29
WHENCHK example

program 4-31
WHENEVER statement, used to

trap errors and warnings 4-29
WHERE-clause values, received at

run time 6-19

X
xopen flag

and -ansi flag warnings 1-40
compiling programs with 1-37

X/Open mode, compiling 1-41
Index 9

	Informix Online Documentation
	Table of Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Demonstration Database

	New Features of This Product
	Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Compliance Icons

	Command-Line Conventions

	Additional Documentation
	Printed Documentation
	On-Line Documentation
	Error Message Files
	Release Notes, Documentation Notes, Machine Notes

	Vendor-Specific Documentation
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Programming with INFORMIX- ESQL/COBOL
	What Is INFORMIX-ESQL/COBOL?
	Preparing to Use INFORMIX-ESQL/COBOL
	Creating a COBOL Run-Time Program
	The RM/COBOL-85 Run-Time Program
	The MF COBOL/2 Run-Time Program

	Using SQL in COBOL Programs
	Embedding SQL Statements in COBOL Programs
	COBOL Statement Format
	Defining Area A
	Defining Area B
	Observing Additional Limitations

	Including Comments
	Reserved Words and Conventions
	Error Handling
	Error Handling Using GET DIAGNOSTICS and SQLSTATE
	Error Handling Using the SQLCA Record
	Error Handling and the WHENEVER Statement

	Using Host Variables in SQL Statements
	Declaring Host Variables
	Declaring Group Items and Arrays

	Using Indicator Variables in SQL Statements
	Following Rules for Indicator Variables
	Representing Indicator Variables
	Declaring Indicator Variables
	Indicator Variables and Null Values
	Generating Compiler Errors After Your Program Retu...
	Inserting a Null Value Using a Negative Indicator ...

	The INFORMIX-ESQL/COBOL Preprocessor
	Supported ESQL/COBOL Preprocessor Instructions
	INCLUDE Statements

	Compiling INFORMIX-ESQL/COBOL Programs
	The esqlcobol Command
	Preprocessing, Compiling, and Linking
	Preprocessing Only
	Displaying the Processing Steps

	Preprocessor Naming Options
	Checking the Version Number
	Including an Alternative SQLCA Header File
	Checking for ANSI-Standard Syntax
	Checking for Missing Indicator Variables
	Compiling in X/Open Mode
	Redirecting Errors and Warnings
	Limiting the Scope of Cursor Names and Statement I...
	Defining and Undefining Values While Preprocessing...

	Running a Program
	A Sample INFORMIX-ESQL/COBOL Program
	The DEMO1.ECO Program
	Explanation of DEMO1.ECO

	INFORMIX-ESQL/COBOL Data Types
	Choosing Data Types for Host Variables
	BINARY or COMP Data Using MF COBOL/2
	Setting the Storage Mode with INFORMIXCOBSTORE

	Data Conversion
	Converting CHARACTER Data
	Converting SMALLINT Data
	Converting INTEGER Data
	Converting FLOAT, SMALLFLOAT, and DECIMAL Data
	Converting DATE Data
	Data Discrepancies During Conversion

	The CHAR Data Type
	CHAR Type Routines
	ECO-DSH
	ECO-USH
	ECO-GST
	ECO-SQC

	The VARCHAR Data Type
	Data Comparison of VARCHAR Values
	Programming with VARCHAR Host Variables

	The TEXT and BYTE Data Types
	Working with Blobs
	Using Blobs with Dynamic SQL
	Using DESCRIBE
	Using SET DESCRIPTOR
	Using GET DESCRIPTOR

	Numeric-Formatting Routines
	Formatting Numeric Strings
	ECO-FFL
	ECO-FIN

	Working with Time Data Types
	DATE Type Routines
	ECO-DAT
	ECO-DAY
	ECO-DEF
	ECO-FMT
	ECO-JUL
	ECO-LYR
	ECO-MDY
	ECO-STR
	ECO-TDY

	DATETIME and INTERVAL Type Routines
	ANSI SQL Standards for DATETIME and INTERVAL Value...
	ECO-DAI
	ECO-DSI
	ECO-DTC
	ECO-DTCVASC
	ECO-DTS
	ECO-DTTOASC
	ECO-DTX
	ECO-IDI ��
	ECO-IDN
	ECO-IMN
	ECO-INCVASC
	ECO-INTOASC
	ECO-INX
	ECO-IQU
	ECO-SQU

	Error Handling
	Obtaining Diagnostic Information After an SQL Stat...
	The GET DIAGNOSTICS Statement
	Statement Information
	Exception Information
	Examples Illustrating the GET DIAGNOSTICS Statemen...
	Using the SQLSTATE Variable��
	Class and Subclass Codes
	List of SQLSTATE Codes
	Using SQLSTATE in Applications

	Multiple Error Conditions

	The SQLCA Record
	The Contents of the SQLCA Structure
	Using SQLCODE OF SQLCA

	Codes for SQL Statement Results
	Success
	Success with Warning
	No Data Found
	SQLSTATE Class Code = 02
	SQLCODE OF SQLCA = 100

	Error
	Errors After a PREPARE Statement
	Errors After an EXECUTE Statement
	When an Error Occurs on GET DIAGNOSTICS

	Error Handling in Programs
	Checking for Errors with the GET DIAGNOSTICS State...
	Checking for an Error Using In-Line Code
	Automatically Checking for Errors Using the WHENEV...
	Checking for Warnings Using GET DIAGNOSTICS
	Checking for Warnings Using the SQLWARN OF SQLCA S...
	ECO-MSG

	A Program That Uses Full Error Checking

	Working with the Database Server
	Understanding Database Server Connections
	Client/Server Architecture of ESQL/COBOL Applicati...
	Connecting an ESQL/COBOL Application to a Database...
	Providing Database Information
	Setting Up the sqlhosts File
	Using Database Server Format Conventions
	Recognizing Types of Database Server Connections
	Establishing Database Server Connections
	Terminating Database Server Connections

	Using Callback Procedures
	Routines That Work with the Database Server
	ECO-SIG
	ECO-SQB
	ECO-SQBCB
	ECO-SQD
	ECO-SQE
	ECO-SQS

	Dynamic Management in INFORMIX-ESQL/COBOL
	Programming with Dynamic SQL Statements
	Working with a System Descriptor Area in INFORMIX-...
	Dynamic SQL Statements and Management Techniques
	When You Need Dynamic SQL Statements

	The System Descriptor Area in ESQL/COBOL
	Using a System Descriptor Area
	Understanding System Descriptor Area Fields
	Using Data Type Values
	Using Statement Type Values

	SELECT Statements That Receive WHERE-Clause Values...
	Using Host Variables
	Using a System Descriptor Area

	SELECT Statements in Which Select-List Values Are ...
	Non-SELECT Statements That Receive Values at Run T...
	Using Host Variables
	Using a System Descriptor Area

	Non-SELECT Statements That Do Not Receive Values a...
	Using the EXECUTE IMMEDIATE Statement

	Executing Stored Procedures That Receive Arguments...
	Creating a Stored Procedure�
	Executing a Stored Procedure Within Your ESQL/COBO...

	Dynamic SQL Program Examples
	The DEMO2.ECO Program
	Explanation of DEMO2.ECO
	The DEMO3.ECO Program
	Explanation of DEMO3.ECO

	List of INFORMIX- ESQL/COBOL Routines
	Index

